n_TOF Collaboration(Damone, L. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2018). Be-7 (n,p)Li-7 Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN. Phys. Rev. Lett., 121(4), 042701–7pp.
Abstract: We report on the measurement of the Be-7(n,p)Li-7 cross section from thermal to approximately 325 keV neutron energy, performed in the high-flux experimental area (EAR2) of the n_TOF facility at CERN. This reaction plays a key role in the lithium yield of the big bang nucleosynthesis (BBN) for standard cosmology. The only two previous time-of-flight measurements performed on this reaction did not cover the energy window of interest for BBN, and they showed a large discrepancy between each other. The measurement was performed with a Si telescope and a high-purity sample produced by implantation of a Be-7 ion beam at the ISOLDE facility at CERN. While a significantly higher cross section is found at low energy, relative to current evaluations, in the region of BBN interest, the present results are consistent with the values inferred from the time-reversal Li-7(p,n)Be-7 reaction, thus yielding only a relatively minor improvement on the so-called cosmological lithium problem. The relevance of these results on the near-threshold neutron production in the p + Li-7 reaction is also discussed.
|
n_TOF Collaboration(Barbagallo, M. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2016). Be-7(n,alpha)He-4 Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN. Phys. Rev. Lett., 117(15), 152701–7pp.
Abstract: The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at nTOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the nTOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been recorded in two Si-Be-7-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 1960s at a nuclear reactor. The energy dependence reported here clearly indicates the inadequacy of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the n_TOF results hint at a minor role of this reaction in BBN, leaving the long-standing cosmological lithium problem unsolved.
|
BRIKEN Collaboration(Tarifeño-Saldivia, A. et al), Tain, J. L., Domingo-Pardo, C., Agramunt, J., Algora, A., Morales, A. I., et al. (2017). Conceptual design of a hybrid neutron-gamma detector for study of beta-delayed neutrons at the RIB facility of RIKEN. J. Instrum., 12, P04006–22pp.
Abstract: BRIKEN is a complex detection system to be installed at the RIB-facility of the RIKEN Nishina Center. It is aimed at the detection of heavy-ion implants, β-particles, γ-rays and β-delayed neutrons. The whole detection setup involves the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and a large set of 166 counters of 3He embedded in a high-density polyethylene matrix. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-tubes array, aiming at the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected parameters of merit, namely, average neutron detection efficiency and efficiency flatness, as a function of a reduced number of geometric variables. The response of the detection system itself, for each configuration, is obtained from a systematic MC-simulation implemented realistically in Geant4. This approach has been found to be particularly useful. On the one hand, due to the different types and large number of 3He-tubes involved and, on the other hand, due to the additional constraints introduced by the ancillary detectors for charged particles and gamma-rays. Empowered by the robustness of the algorithm, we have been able to design a versatile detection system, which can be easily re-arranged into a compact mode in order to maximize the neutron detection performance, at the cost of the gamma-ray sensitivity. In summary, we have designed a system which shows, for neutron energies up to 1(5) MeV, a rather flat and high average efficiency of 68.6%(64%) and 75.7%(71%) for the hybrid and compact modes, respectively. The performance of the BRIKEN system has been also quantified realistically by means of MC-simulations made with different neutron energy distributions.
|
n_TOF Collaboration(Cosentino, L. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2016). Experimental setup and procedure for the measurement of the Be-7(n,alpha)alpha reaction at n_TOF. Nucl. Instrum. Methods Phys. Res. A, 830, 197–205.
Abstract: The newly built second experimental area EAR2 of then n_ToF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experimental procedure for the determination of the cross-section of the Be-7(n,alpha)alpha reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge Be-7 gamma-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutron beam.
|
Magan, D. L. P., Caballero, L., Domingo-Pardo, C., Agramunt-Ros, J., Albiol, F., Casanovas, A., et al. (2016). First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements. Nucl. Instrum. Methods Phys. Res. A, 823, 107–119.
Abstract: In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.
|
Kiss, G. G. et al, Tarifeño-Saldivia, A., Tain, J. L., Agramunt, J., Algora, A., Domingo-Pardo, C., et al. (2022). Measuring the beta-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region. Astrophys. J., 936(2), 107–18pp.
Abstract: The beta-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The existing beta-decay half-life (T (1/2)) database was significantly increased toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data not only constrain the theoretical predictions of half-lives and beta-delayed neutron-emission probabilities, but also allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located at A approximate to 160 in the r-process abundance distribution through astrophysical reaction network calculations. An uncertainty quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has identified the half-lives of Sm-168 and of several gadolinium isotopes as some of the key variables among the current experimental data to understand the remaining abundance uncertainty at A = 167-172.
|
n_TOF Collaboration(Gawlik, A. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2021). Radiative Neutron Capture Cross-Section Measurement of Ge Isotopes at n_TOF CERN Facility and Its Importance for Stellar Nucleosynthesis. Acta Phys. Pol. A, 139(4), 383–388.
Abstract: This manuscript summarizes the results of radiative neutron capture cross-section measurements on two stable germanium isotopes, Ge-70 and Ge-73. Experiments were performed at the n_TOF facility at CERN via the time-of-flight technique, over a wide neutron energy range, for all stable germanium isotopes (70,72,73,74, and 76). Results for Ge-70 [Phys. Rev. C 100, 045804 (2019)] and Ge-73 [Phys. Lett. B 790, 458 (2019)] are already published. In the field of nuclear structure, such measurements allow to study excited levels close to the neutron binding energy and to obtain information on nuclear properties. In stellar nucleosynthesis research, neutron induced reactions on germanium are of importance for nucleosynthesis in the weak component of the slow neutron capture processes.
|
n_TOF Collaboration(Gunsing, F. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2016). Nuclear data activities at the n_TOF facility at CERN. Eur. Phys. J. Plus, 131(10), 371–13pp.
Abstract: Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility nTOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility nTOF will be presented.
|
n_TOF Collaboration(Lederer-Woods, C. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2022). Ge-74(n, gamma) cross section below 70 keV measured at n_TOF CERN. Eur. Phys. J. A, 58(12), 239–9pp.
Abstract: Neutron capture reaction cross sections on Ge-74 are of importance to determine Ge-74 production during the astrophysical slow neutron capture process. We present new resonance data on Ge-74(n, gamma ) reactions below 70 keV neutron energy. We calculate Maxwellian averaged cross sections, combining our data below 70 keV with evaluated cross sections at higher neutron energies. Our stellar cross sections are in agreement with a previous activation measurement performed at Forschungszentrum Karlsruhe by Marganiec et al., once their data has been re-normalised to account for an update in the reference cross section used in that experiment.
|
n_TOF Collaboration(Sabate-Gilarte et al.), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2017). High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERNx. Eur. Phys. J. A, 53(10), 210–13pp.
Abstract: A new high flux experimental area has recently become operational at the nTOF facility at CERN. This new measuring station, nTOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutronconverting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197 Au foils in the beam.
|