toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Gariazzo, S.; Mena, O.; Schwetz, T. url  doi
openurl 
  Title Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 40 Issue Pages 101226 - 8pp  
  Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses  
  Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001042929800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5623  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
 

 
Author Gariazzo, S.; Gerbino, M.; Brinckmann, T.; Lattanzi, M.; Mena, O.; Schwetz, T.; Choudhury, S.R.; Freese, K.; Hannestad, S.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino mass and mass ordering: no conclusive evidence for normal ordering Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 010 - 18pp  
  Keywords Bayesian reasoning; neutrino properties; neutrino masses from cosmology; cosmological parameters from CMBR  
  Abstract The extraction of the neutrino mass ordering is one of the major challenges in particle physics and cosmology, not only for its implications for a fundamental theory of mass generation in nature, but also for its decisive role in the scale of future neutrinoless double beta decay experimental searches. It has been recently claimed that current oscillation, beta decay and cosmological limits on the different observables describing the neutrino mass parameter space provide robust decisive Bayesian evidence in favor of the normal ordering of the neutrino mass spectrum [1]. We further investigate these strong claims using a rich and wide phenomenology, with different sampling techniques of the neutrino parameter space. Contrary to the findings of Jimenez et al. [1], no decisive evidence for the normal mass ordering is found. Neutrino mass ordering analyses must rely on priors and parameterizations that are ordering-agnostic: robust results should be regarded as those in which the preference for the normal neutrino mass ordering is driven exclusively by the data, while we find a difference of up to a factor of 33 in the Bayes factors among the different priors and parameterizations exploited here. An ordering-agnostic prior would be represented by the case of parameterizations sampling over the two mass splittings and a mass scale, or those sampling over the individual neutrino masses via normal prior distributions only. In this regard, we show that the current significance in favor of the normal mass ordering should be taken as 2.7 sigma (i.e. moderate evidence), mostly driven by neutrino oscillation data. Let us stress that, while current data favor NO only mildly, we do not exclude the possibility that this may change in the future. Eventually, upcoming oscillation and cosmological data may (or may not) lead to a more significant exclusion of IO.  
  Address [Gariazzo, Stefano; Ternes, Christoph A.] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000928487200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5477  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Trautner, A. url  doi
openurl 
  Title Asymmetric tri-bi-maximal mixing and residual symmetries Type Journal Article
  Year 2020 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A  
  Volume 35 Issue 35 Pages 2050292 - 15pp  
  Keywords CP symmetry; CP violation; tri-bi-maximal mixing; asymmetrix texture; grand unification; neutrino masses; neutrino mixing; neutrinoless double beta decay  
  Abstract Asymmetric tri-bi-maximal mixing is a recently proposed, grand unified theory (GUT) based, flavor mixing scheme. In it, the charged lepton mixing is fixed by the GUT connection to down-type quarks and a T-13 flavor symmetry, while neutrino mixing is assumed to be tri-bi-maximal (TBM) with one additional free phase. Here we show that this additional free phase can be fixed by the residual flavor and CP symmetries of the effective neutrino mass matrix. We discuss how those residual symmetries can be unified with T-13 and identify the smallest possible unified flavor symmetries, namely (Z(13)xZ(13))(sic)D-12 and (Z(13)xZ(13))(sic)S-4. Sharp predictions are obtained for lepton mixing angles, CP violating phases and neutrinoless double beta decay.  
  Address [Chulia, Salvador Centelles] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran,2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-7323 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000599872300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4648  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R. url  doi
openurl 
  Title Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries Type Journal Article
  Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 44 Issue 8 Pages 083110 - 7pp  
  Keywords neutrino masses; dark matter; symmetries; scotogenic  
  Abstract We demonstrate that a scotogenic dark symmetry can be obtained as a residual subgroup of the global U(1)(B-L) symmetry already present in the Standard Model. In addition, we propose a general framework in which the U(1)(B-L) symmetry is spontaneously broken into an even Z(2n) subgroup, setting the general conditions for neutrinos to be Majorana and for dark matter stability to exist in terms of the residual Z(2n). As an example, under this general framework, we build a class of simple models where, in a scotogenic manner, the dark matter candidate is the lightest particle running inside the mass loop of a neutrino. The global U(1)(B-L) symmetry in our framework, being anomaly free, can also be gauged in a straightforward manner leading to a richer phenomenology.  
  Address [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000557423400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4494  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva