toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Karan, A.; Sadhukhan, S.; Valle, J.W.F. url  doi
openurl 
  Title Phenomenological profile of scotogenic fermionic dark matter Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 185 - 34pp  
  Keywords Particle Nature of Dark Matter; Models for Dark Matter; Neutrino Interactions  
  Abstract We consider the possibility that neutrino masses arise from the exchange of dark matter states. We examine in detail the phenomenology of fermionic dark matter in the singlet-triplet scotogenic model. We explore the case of singlet-like fermionic dark matter, taking into account all coannihilation effects relevant for determining its relic abundance, such as fermion-fermion and scalar-fermion coannihilation. Although this in principle allows for dark matter below 60 GeV, the latter is in conflict with charged lepton flavour violation (cLFV) and/or collider physics constraints. We examine the prospects for direct dark matter detection in upcoming experiments up to 10 TeV. Fermion-scalar coannihilation is needed to obtain viable fermionic dark matter in the 60-100 GeV mass range. Fermion-fermion and fermion-scalar coannihilation play complementary roles in different parameter regions above 100 GeV.  
  Address [Karan, Anirban; Sadhukhan, Soumya; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: kanirban@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001135721300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5904  
Permanent link to this record
 

 
Author Alonso-Gonzalez, D.; Amaral, D.W.P.; Bariego-Quintana, A.; Cerdeño, D.; de los Rios, M. url  doi
openurl 
  Title Measuring the sterile neutrino mass in spallation source and direct detection experiments Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 096 - 27pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos  
  Abstract We explore the complementarity of direct detection (DD) and spallation source (SS) experiments for the study of sterile neutrino physics. We focus on the sterile baryonic neutrino model: an extension of the Standard Model that introduces a massive sterile neutrino with couplings to the quark sector via a new gauge boson. In this scenario, the inelastic scattering of an active neutrino with the target material in both DD and SS experiments gives rise to a characteristic nuclear recoil energy spectrum that can allow for the reconstruction of the neutrino mass in the event of a positive detection. We first derive new bounds on this model based on the data from the COHERENT collaboration on CsI and LAr targets, which we find do not yet probe new areas of the parameter space. We then assess how well future SS experiments will be able to measure the sterile neutrino mass and mixings, showing that masses in the range similar to 15 – 50 MeV can be reconstructed. We show that there is a degeneracy in the measurement of the sterile neutrino mixing that substantially affects the reconstruction of parameters for masses of the order of 40 MeV. Thanks to their lower energy threshold and sensitivity to the solar tau neutrino flux, DD experiments allow us to partially lift the degeneracy in the sterile neutrino mixings and considerably improve its mass reconstruction down to 9 MeV. Our results demonstrate the excellent complementarity between DD and SS experiments in measuring the sterile neutrino mass and highlight the power of DD experiments in searching for new physics in the neutrino sector.  
  Address [Alonso-Gonzalez, D.; Cerdeno, D.; de los Rios, M.] IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: david.alonsogonzalez@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001129664000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5886  
Permanent link to this record
 

 
Author Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S. url  doi
openurl 
  Title Global constraints on non-standard neutrino interactions with quarks and electrons Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 032 - 42pp  
  Keywords Neutrino Mixing; Non-Standard Neutrino Properties; Neutrino Interactions  
  Abstract We derive new constraints on effective four-fermion neutrino non-standard interactions with both quarks and electrons. This is done through the global analysis of neutrino oscillation data and measurements of coherent elastic neutrino-nucleus scattering (CE & nu;NS) obtained with different nuclei. In doing so, we include not only the effects of new physics on neutrino propagation but also on the detection cross section in neutrino experiments which are sensitive to the new physics. We consider both vector and axial-vector neutral-current neutrino interactions and, for each case, we include simultaneously all allowed effective operators in flavour space. To this end, we use the most general parametrization for their Wilson coefficients under the assumption that their neutrino flavour structure is independent of the charged fermion participating in the interaction. The status of the LMA-D solution is assessed for the first time in the case of new interactions taking place simultaneously with up quarks, down quarks, and electrons. One of the main results of our work are the presently allowed regions for the effective combinations of non-standard neutrino couplings, relevant for long-baseline and atmospheric neutrino oscillation experiments.  
  Address [Coloma, Pilar; Maltoni, Michele] UAM, Inst Fis Teor IFT, CSIC, CFTMAT, Calle Nicolas Cabrera 13-15,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044930400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5606  
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Hostert, M.; Lopez-Pavon, J. url  doi
openurl 
  Title Effective portals to heavy neutral leptons Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 001 - 45pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos  
  Abstract The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is strongly motivated by the observation of neutrino masses and mixing. The mass of these new particles could lie below the electroweak scale, making them accessible to lowenergy laboratory experiments. Additional new physics at high energies can mediate new interactions between the Standard Model particles and HNLs, and is most conveniently parametrized by the neutrino Standard Model Effective Field Theory, or nu SMEFT for short. In this work, we consider the dimension six nu SMEFT operators involving one HNL field in the mass range of O(1) MeV < MN < O(100) GeV. By recasting existing experimental limits on the production and decay of new light particles, we constrain the Wilson coefficients and new physics scale of each operator as a function of the HNL mass.  
  Address [Fernandez-Martinez, Enrique; Gonzalez-Lopez, Manuel] Univ Autonoma Madrid, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067715500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5697  
Permanent link to this record
 

 
Author Pompa, F.; Schwetz, T.; Zhu, J.Y. url  doi
openurl 
  Title Impact of nuclear matrix element calculations for current and future neutrinoless double beta decay searches Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 104 - 29pp  
  Keywords Baryon; Lepton Number Violation; Neutrino Interactions  
  Abstract Nuclear matrix elements (NME) are a crucial input for the interpretation of neutrinoless double beta decay data. We consider a representative set of recent NME calculations from different methods and investigate the impact on the present bound on the effective Majorana mass m(& beta;& beta;) by performing a combined analysis of the available data as well as on the sensitivity reach of future projects. A crucial role is played by the recently discovered short-range contribution to the NME, induced by light Majorana neutrino masses. Depending on the NME model and the relative sign of the long- and short-range contributions, the current 3 & sigma; bound can change between m(& beta;& beta;)< 40 meV and 600 meV. The sign-uncertainty may either boost the sensitivity of next-generation experiments beyond the region for m(& beta;& beta;) predicted for inverted mass ordering or prevent even advanced setups to reach this region. Furthermore, we study the possibility to distinguish between different NME calculations by assuming a positive signal and by combining measurements from different isotopes. Such a discrimination will be impossible if the relative sign of the long- and short-range contribution remains unknown, but can become feasible if m(& beta;& beta;) & GSIM; 40 meV and if the relative sign is known to be positive. Sensitivities will be dominated by the advanced Ge-76 and Xe-136 setups assumed here, but NME model-discrimination improves if data from a third isotope is added, e.g., from Te-130 or Mo-100.  
  Address [Pompa, Federica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Parc Cientif UV, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: zhujingyu@sjtu.edu.cn  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001016276900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5580  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva