toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Candela-Juan, C.; Ballester, F.; Perez-Calatayud, J.; Vijande, J. url  openurl
  Title Assaying multiple I-125 seeds with the well-ionization chamber SourceCheck(4 Pi) 33005 and a new insert Type Journal Article
  Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy  
  Volume 7 Issue 6 Pages 492-496  
  Keywords brachytherapy; insert; quality assurance; prostate; seeds; well chamber  
  Abstract Purpose: To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck(4 Pi) 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten I-125 seeds with one single measurement instead of measuring each seed individually. Material and methods: The material required is: a) the SourceCheck(4 Pi) 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S-K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S-K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds.The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S-K. The proposed method is validated by comparing the mean S-K of the ten seeds obtained from the new insert with the individual measurement of S-K of each seed, evaluated with the PTW insert. Results: The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck(4 Pi) 33005 is 1.135 +/- 0.007 (k = 1). The mean S-K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S-K of each seed. Conclusions: The new insert and procedure allow evaluating the mean S-K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S-K of each seed.  
  Address [Candela-Juan, Cristian; Perez-Calatayud, Jose] La Fe Univ, Dept Radiat Oncol, Phys Sect, E-46026 Valencia, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Termedia Publishing House Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1689-832x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368381300010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2533  
Permanent link to this record
 

 
Author Richart, J.; Otal, A.; Rodriguez, S.; Nicolas, A.I.; DePiaggio, M.; Santos, M.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template Type Journal Article
  Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy  
  Volume 7 Issue 5 Pages 407-414  
  Keywords brachytherapy template; catheter reconstruction; gynecological template; interstitial implants  
  Abstract Purpose: There are perineal templates for interstitial implants such as MUPIT and Syed applicators. Their limitations are the intracavitary component deficit and the necessity to use computed tomography (CT) for treatment planning since both applicators are non-magnetic resonance imaging (MRI) compatibles. To overcome these problems, a new template named Template Benidorm (TB) has been recently developed. Titanium needles are usually reconstructed based on their own artifacts, mainly in T1-weighted sequence, using the void on the tip as the needle tip position. Nevertheless, patient tissues surrounding the needles present heterogeneities that complicate the accurate identification of these artifact patterns. The purpose of this work is to improve the titanium needle reconstruction uncertainty for the TB case using a simple method based on the free needle lengths and typical MRI pellets markers. Material and methods: The proposed procedure consists on the inclusion of three small A-vitamin pellets (hyper-intense on MRI images) compressed by both applicator plates defining the central plane of the plate's arrangement. The needles used are typically 20 cm in length. For each needle, two points are selected defining the straight line. From such line and the plane equations, the intersection can be obtained, and using the free length (knowing the offset distance), the coordinates of the needle tip can be obtained. The method is applied in both T1W and T2W acquisition sequences. To evaluate the inter-observer variation of the method, three implants of T1W and another three of T2W have been reconstructed by two different medical physicists with experience on these reconstructions. Results and conclusions: The differences observed in the positioning were significantly smaller than 1 mm in all cases. The presented algorithm also allows the use of only T2W sequence either for contouring or reconstruction purposes. The proposed method is robust and independent of the visibility of the artifact at the tip of the needle.  
  Address [Richart, Jose; Otal, Antonio; Rodriguez, Silvia; DePiaggio, Marina; Santos, Manuel; Perez-Calatayud, Jose] Benidorm Hosp, Dept Radiotherapy, Alicante, Spain, Email: fballest@uv.es  
  Corporate Author Thesis  
  Publisher Termedia Publishing House Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1689-832x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365247600012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2476  
Permanent link to this record
 

 
Author Oliver-Canamas, L.; Vijande, J.; Candela-Juan, C.; Gimeno-Olmos, J.; Pujades-Claumarchirant, M.C.; Rovira-Escutia, J.J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title A User-Friendly System for Mailed Dosimetric Audits of Ir-192 or Co-60 HDR Brachytherapy Sources Type Journal Article
  Year 2023 Publication Cancers Abbreviated Journal Cancers  
  Volume 15 Issue 9 Pages 2484 - 14pp  
  Keywords high dose rate brachytherapy; dosimetric audit; error detection; phantom  
  Abstract Nowadays, the options available to perform external dosimetric audits of the high dose rate (HDR) brachytherapy treatment process are limited. In this work, we present a methodology that allows for performing dosimetric audits in this field. A phantom was designed and manufactured for this purpose. The criteria for its design, together with the in-house measurements for its characterization, are presented. The result is a user-friendly system that can be mailed to perform dosimetric audits in HDR brachytherapy on-site for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Objectives: The main goal of this work is to design and characterize a user-friendly methodology to perform mailed dosimetric audits in high dose rate (HDR) brachytherapy for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Methods: A solid phantom was designed and manufactured with four catheters and a central slot to place one dosimeter. Irradiations with an Elekta MicroSelectron V2 for Ir-192, and with a BEBIG Multisource for Co-60 were performed for its characterization. For the dose measurements, nanoDots, a type of optically stimulated luminescent dosimeters (OSLDs), were characterized. Monte Carlo (MC) simulations were performed to evaluate the scatter conditions of the irradiation set-up and to study differences in the photon spectra of different Ir-192 sources (Microselectron V2, Flexisource, BEBIG Ir2.A85-2 and Varisource VS2000) reaching the dosimeter in the irradiation set-up. Results: MC simulations indicate that the surface material on which the phantom is supported during the irradiations does not affect the absorbed dose in the nanoDot. Generally, differences below 5% were found in the photon spectra reaching the detector when comparing the Microselectron V2, the Flexisource and the BEBIG models. However, differences up to 20% are observed between the V2 and the Varisource VS2000 models. The calibration coefficients and the uncertainty in the dose measurement were evaluated. Conclusions: The system described here is able to perform dosimetric audits in HDR brachytherapy for systems using either Ir-192 or Co-60 sources. No significant differences are observed between the photon spectra reaching the detector for the MicroSelectron V2, the Flexisource and the BEBIG Ir-192 sources. For the Varisource VS2000, a higher uncertainty is considered in the dose measurement to allow for the nanoDot response.  
  Address [Oliver-Canamas, Laura] Serv Radiofis & Proteccio Radiol, Consorci Hospitalari Prov Castello CHPC, Castellon de La Plana 12002, Spain, Email: laura.oliver.canas@gmail.com  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000987247100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5542  
Permanent link to this record
 

 
Author Otal, A.; Celada, F.; Chimeno, J.; Vijande, J.; Pellejero, S.; Perez-Calatayud, M.J.; Villafranca, E.; Fuentemilla, N.; Blazquez, F.; Rodriguez, S.; Perez-Calatayud, J. doi  openurl
  Title Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives Type Journal Article
  Year 2022 Publication Cancers Abbreviated Journal Cancers  
  Volume 14 Issue 14 Pages 3467 - 15pp  
  Keywords cervix; treatment planning systems; interstitial applicators; magnetic resonance  
  Abstract Simple Summary There are no brachytherapy treatment planning systems (TPS) exclusively for the treatment of cervical tumours, so general-purpose TPSs are used. However, these treatments have some particular features concerning the treatment of other pathologies, especially in the case of exclusive use of MRI as an imaging modality and the presence of gynaecological applicators in combination with an interstitial part. That is why it is essential to review the latest versions of commercial TPSs to find the potential features to improve with the help of a group of experimented medical physicists and radiation oncologists. Furthermore, after reviewing the recent literature for advances applicable to cervical brachytherapy and through his own clinical experience, possible improvements are proposed to software providers for the development of new tools. Intracavitary brachytherapy (BT, Interventional Radiotherapy, IRT), plays an essential role in the curative intent of locally advanced cervical cancer, for which the conventional approach involves external beam radiotherapy with concurrent chemotherapy followed by BT. This work aims to review the different methodologies used by commercially available treatment planning systems (TPSs) in exclusive magnetic resonance imaging-based (MRI) cervix BT with interstitial component treatments. Practical aspects and improvements to be implemented into the TPSs are discussed. This review is based on the clinical expertise of a group of radiation oncologists and medical physicists and on interactive demos provided by the software manufacturers. The TPS versions considered include all the new tools currently in development for future commercial releases. The specialists from the supplier companies were asked to propose solutions to some of the challenges often encountered in a clinical environment through a questionnaire. The results include not only such answers but also comments by the authors that, in their opinion, could help solve the challenges covered in these questions. This study summarizes the possibilities offered nowadays by commercial TPSs, highlighting the absence of some useful tools that would notably improve the planning of MR-based interstitial component cervix brachytherapy.  
  Address [Otal, Antonio] Hosp Arnau Vilanova, Med Phys Dept, Lleida 25198, Spain, Email: aotalpalacin@gmail.com;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000832057600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5304  
Permanent link to this record
 

 
Author Granero, D.; Candela-Juan, C.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Jacob, D.; Mourtada, F. doi  openurl
  Title Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 43 Issue 5 Pages 2087 - 4pp  
  Keywords Leipzig applicators; Valencia applicators; skin brachytherapy; Monte Carlo; dosimetry  
  Abstract Purpose: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. Methods: GEANT4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with and without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. Results: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. Conclusions: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement. (C) 2016 American Association of Physicists in Medicine.  
  Address [Granero, D.] Hosp Gen Univ, Dept Radiat Phys, ERESA, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378924200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2753  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva