toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author n_TOF Collaboration (Alcayne, V. et al); Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Ladarescu, I. url  doi
openurl 
  Title A Segmented Total Energy Detector (sTED) optimized for (n,γ) cross-section measurements at n_TOF EAR2 Type Journal Article
  Year 2024 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 217 Issue Pages 11pp  
  Keywords Neutron capture; PHWT; Scintillation detectors; Monte Carlo simulation  
  Abstract The neutron time-of-flight facility nTOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at nTOF EAR2.  
  Address [Alcayne, V.; Cano-Ott, D.; Garcia, J.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A. Perez; Plaza, J.; Sanchez-Caballero, A.; Mendoza, E.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain, Email: victor.alcayne@ciemat.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185584800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5999  
Permanent link to this record
 

 
Author n_TOF Collaboration (Domingo-Pardo, C. et al); Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Ladarescu, I.; Lerendegui-Marco, J.; Tain, J.L.; Tarifeño-Saldivia, A. url  doi
openurl 
  Title Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF Type Journal Article
  Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 59 Issue 1 Pages 8 - 11pp  
  Keywords  
  Abstract This article presents a few selected developments and future ideas related to the measurement of (n, gamma ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with gamma- ray imaging capability for background suppression, and the development of an array of small-volume organic scintilla tors aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area.  
  Address [Domingo-Pardo, C.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Ladarescu, I.; Lerendegui-Marco, J.; Tain, J. L.; Tarifeno-Saldivia, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000926364900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5479  
Permanent link to this record
 

 
Author Lerendegui-Marco, J.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Calvo, D.; Ladarescu, I.; Domingo-Pardo, C. url  doi
openurl 
  Title Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections Type Journal Article
  Year 2024 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.  
  Volume 11 Issue 1 Pages 2 - 17pp  
  Keywords Gamma imaging; Neutron imaging; Nuclear inspections; Homeland security; Nuclear waste characterization  
  Abstract This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.  
  Address [Lerendegui-Marco, Jorge; Babiano-Suarez, Victor; Balibrea-Correa, Javier; Caballero, Luis; Calvo, David; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-7045 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001171512700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5975  
Permanent link to this record
 

 
Author Balibrea-Correa, J.; Lerendegui-Marco, J.; Ladarescu, I.; Guerrero, C.; Rodriguez-Gonzalez, T.; Jimenez-Ramos, M.C.; Fernandez-Martinez, B.; Domingo-Pardo, C. url  doi
openurl 
  Title Hybrid in-beam PET- and Compton prompt-gamma imaging aimed at enhanced proton-range verification Type Journal Article
  Year 2022 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 137 Issue 11 Pages 1258 - 18pp  
  Keywords  
  Abstract We report on a hybrid in-beam PET and prompt-gamma Compton imaging system aimed at quasi real-time ion-range verification in proton-therapy treatments. Proof-of-concept experiments were carried out at the radiobiology beam line of the CNA cyclotron facility using a set of two synchronous Compton imagers and different target materials. The time structure of the 18 MeV proton beam was shaped with a series of beam-on and beam-off intervals, thereby mimicking a pulsed proton beam on a long time scale. During beam-on intervals, Compton imagingwas performed utilizing the high energy. -rays promptly emitted from the nuclear reactions occurring in the targets. In the course of the beam-off intervals in situ positron-emission tomography was accomplished with the same imagers using the beta+ decay of activated nuclei. The targets used were stacks of different materials covering also various proton ranges and energies. A systematic study on the performance of these two complementary imaging techniques is reported and the experimental results interpreted on the basis ofMonte Carlo calculations. The results demonstrate the possibility to combine both imaging techniques in a concomitant way, where high-efficiency prompt-gamma imaging is complemented with the high spatial accuracy of PET. Empowered by these results we suggest that a pulsed beam with a suitable duty cycle, in conjunction with in situ Compton- and PET-imaging may help to attain complementary information and quasi real-time range monitoring with high accuracy.  
  Address [Balibrea-Correa, J.; Lerendegui-Marco, J.; Ladarescu, I; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: javier.balibrea@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000886327900002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5420  
Permanent link to this record
 

 
Author Lerendegui-Marco, J.; Balibrea-Correa, J.; Babiano-Suarez, V.; Ladarescu, I.; Domingo-Pardo, C. url  doi
openurl 
  Title Towards machine learning aided real-time range imaging in proton therapy Type Journal Article
  Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 12 Issue 1 Pages 2735 - 17pp  
  Keywords  
  Abstract Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by gamma-ray energies spanning up to 5-6 MeV, rather low gamma-ray emission yields and very intense neutron induced gamma-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high gamma-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr3. Its high time-resolution (CRT similar to 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV gamma-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10(8) protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy gamma-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.  
  Address [Lerendegui-Marco, Jorge; Balibrea-Correa, Javier; Babiano-Suarez, Victor; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000757537100018 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5136  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva