toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M. url  doi
openurl 
  Title Non-unitary three-neutrino mixing in the early Universe Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 046 - 18pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino theory  
  Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.  
  Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000959757500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5516  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
 

 
Author Bennett, J.J.; Buldgen, G.; de Salas, P.F.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y.Y.Y. url  doi
openurl 
  Title Towards a precision calculation of the effective number of neutrinos N-eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 073 - 33pp  
  Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe  
  Abstract We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, N-eff(SM), that quantifies the cosmological neutrinoto-photon energy densities. The calculation takes into account neutrino flavour oscillations, finite-temperature effects in the quantum electrodynamics plasma to O(e(3)), where e is the elementary electric charge, and a full evaluation of the neutrino-neutrino collision integral. We provide furthermore a detailed assessment of the uncertainties in the benchmark N(eff)(SM )value, through testing the value's dependence on (i) optional approximate modelling of the weak collision integrals, (ii) measurement errors in the physical parameters of the weak sector, and (iii) numerical convergence, particularly in relation to momentum discretisation. Our new, recommended standard-model benchmark is N-eff(SM) 3.0440 +/- 0.0002, where the nominal uncertainty is attributed predominantly to errors incurred in the numerical solution procedure (vertical bar delta N-eff vertical bar similar to 10(-4)), augmented by measurement errors in the solar mixing angle sin(2) theta(12) (vertical bar delta N-eff vertical bar similar to 10(-4)).  
  Address [Bennett, Jack J.; Wong, Yvonne Y. Y.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: j.j.bennett@unsw.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647827600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4827  
Permanent link to this record
 

 
Author Barenboim, G.; Chen, J.Z.; Hannestad, S.; Oldengott, I.M.; Tram, T.; Wong, Y.Y.Y. url  doi
openurl 
  Title Invisible neutrino decay in precision cosmology Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 087 - 53pp  
  Keywords cosmological neutrinos; neutrino properties; CMBR theory; cosmological parameters from CMBR  
  Abstract We revisit the topic of invisible neutrino decay in the precision cosmological context, via a first-principles approach to understanding the cosmic microwave background and large-scale structure phenomenology of such a non-standard physics scenario. Assuming an effective Lagrangian in which a heavier standard-model neutrino nu(H) couples to a lighter one nu(l) and a massless scalar particle phi via a Yukawa interaction, we derive from first principles the complete set of Boltzmann equations, at both the spatially homogeneous and the firstorder inhomogeneous levels, for the phase space densities of nu(H), nu(l), and phi in the presence of the relevant decay and inverse decay processes. With this set of equations in hand, we perform a critical survey of recent works on cosmological invisible neutrino decay in both limits of decay while nu(H) is ultra-relativistic and non-relativistic. Our two main findings are: (i) in the non-relativistic limit, the effective equations of motion used to describe perturbations in the neutrino-scalar system in the existing literature formally violate momentum conservation and gauge invariance, and (ii) in the ultra-relativistic limit, exponential damping of the anisotropic stress does not occur at the commonly-used rate Gamma(T) = (1/tau(0))( m(nu H)/E-nu H)(3), but at a rate similar to (1/ tau(0))(m(nu H)/E-nu H)(5). Both results are model-independent. The impact of the former finding on the cosmology of invisible neutrino decay is likely small. The latter, however, implies a significant revision of the cosmological limit on the neutrino lifetime tau(0) from tau(old)(0) greater than or similar to 1.2 x 10(9) s (m(nu H)/50 meV)(3) to tau(0) greater than or similar to (4 x 10(5) -> 4 x 10(6)) s (m(nu H)/50 meV)(5).  
  Address [Barenboim, Gabriela; Oldengott, Isabel M.] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636717400082 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4782  
Permanent link to this record
 

 
Author Archidiacono, M.; Gariazzo, S.; Giunti, C.; Hannestad, S.; Tram, T. url  doi
openurl 
  Title Sterile neutrino self-interactions: H-0 tension and short-baseline anomalies Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 029 - 20pp  
  Keywords cosmological neutrinos; cosmological parameters from CMBR; particle physics – cosmology connection; physics of the early universe  
  Abstract Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such neutrinos would have been fully thermalised in the early universe, and would be therefore in strong conflict with cosmological bounds. In this study we first update cosmological bounds on the mass and energy density of eV-scale sterile neutrinos. We then perform an updated study of a previously proposed model in which the sterile neutrino couples to a new light pseudoscalar degree of freedom. Consistently with previous analyses, we find that the model provides a good fit to all cosmological data and allows the high value of H-0 measured in the local universe to be consistent with measurements of the cosmic microwave background. However, new high l polarisation data constrain the sterile neutrino mass to be less than approximately 1 eV in this scenario. Finally, we combine the cosmological bounds on the pseudoscalar model with a Bayesian inference analysis of SBL data and conclude that only a sterile mass in narrow ranges around 1 eV remains consistent with both cosmology and SBL data.  
  Address [Archidiacono, Maria] Univ Milan, Via G Celoria 16, I-20133 Milan, Italy, Email: maria.archidiacono@unimi.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609105900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4688  
Permanent link to this record
 

 
Author Mertsch, P.; Parimbelli, G.; de Salas, P.F.; Gariazzo, S.; Lesgourgues, J.; Pastor, S. url  doi
openurl 
  Title Neutrino clustering in the Milky Way and beyond Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 015 - 23pp  
  Keywords cosmological neutrinos; galaxy clustering; cosmological simulations  
  Abstract The standard cosmological model predicts the existence of a Cosmic Neutrino Background, which has not yet been observed directly. Some experiments aiming at its detection are currently under development, despite the tiny kinetic energy of the cosmological relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos should be more abundant at the Earth position than at an average point in the Universe. This fact may enhance the expected event rate in any future experiment. Past calculations of the local neutrino clustering factor only considered a spherical distribution of matter in the Milky Way and neglected the influence of other nearby objects like the Virgo cluster, although recent N-body simulations suggest that the latter may actually be important. In this paper, we adopt a back-tracking technique, well established in the calculation of cosmic rays fluxes, to perform the first three-dimensional calculation of the number density of relic neutrinos at the Solar System, taking into account not only the matter composition of the Milky Way, but also the contribution of the Andromeda galaxy and the Virgo cluster. The effect of Virgo is indeed found to be relevant and to depend non-trivially on the value of the neutrino mass. Our results show that the local neutrino density is enhanced by 0.53% for a neutrino mass of 10 meV, 12% for 50 meV, 50% for 100 meV or 500% for 300 meV.  
  Address [Mertsch, P.; Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany, Email: pmertsch@physik.rwth-aachen.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000528025800016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4382  
Permanent link to this record
 

 
Author Gariazzo, S.; de Salas, P.F.; Pastor, S. url  doi
openurl 
  Title Thermalisation of sterile neutrinos in the early universe in the 3+1 scheme with full mixing matrix Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 014 - 30pp  
  Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe  
  Abstract In the framework of a 3+1 scheme with an additional inert state, we consider the thermalisation of sterile neutrinos in the early Universe taking into account the full 4 x 4 mixing matrix. The evolution of the neutrino energy distributions is found solving the momentum-dependent kinetic equations with full diagonal collision terms, as in previous analyses of flavour neutrino decoupling in the standard case. The degree of thermalisation of the sterile state is shown in terms of the effective number of neutrinos, N-eff, and its dependence on the three additional mixing angles (theta(14), theta(24), theta(34)) and on the squared mass difference Delta m(41)(2) is discussed. Our results are relevant for fixing the contribution of a fourth light neutrino species to the cosmological energy density, whose value is very well constrained by the final Planck analysis. For the preferred region of active-sterile mixing parameters from short-baseline neutrino experiments, we find that the fourth state is fully thermalised (N-eff similar or equal to 4).  
  Address [Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000474782100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4076  
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Yamada, M. url  doi
openurl 
  Title Light majoron cold dark matter from topological defects and the formation of boson stars Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 029 - 25pp  
  Keywords Cosmic strings; domain walls; monopoles; particle physics – cosmology connection; cosmology of theories beyond the SM; cosmological neutrinos  
  Abstract We show that for a relatively light majoron (<< 100 eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.  
  Address [Reig, Mario; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487690100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4154  
Permanent link to this record
 

 
Author PTOLEMY Collaboration (Betti, M.G. et al); Gariazzo, S.; Pastor, S. url  doi
openurl 
  Title Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 047 - 31pp  
  Keywords cosmological neutrinos; neutrino detectors; particle physics – cosmology connection; physics of the early universe  
  Abstract The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.  
  Address [Betti, M. G.; Cavoto, G.; Mancini-Terracciano, C.; Mariani, C.; Polosa, A. D.; Rago, I] Univ Roma La Sapienza, Rome, Italy, Email: pabferde@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000478735300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4097  
Permanent link to this record
 

 
Author Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J. url  doi
openurl 
  Title How to relax the cosmological neutrino mass bound Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 049 - 18pp  
  Keywords neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS  
  Abstract We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.  
  Address [Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466578400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4001  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva