toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Maji, R.; Park, W.I. url  doi
openurl 
  Title Supersymmetric U(1)B-L flat direction and NANOGrav 15 year data Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 015 - 19pp  
  Keywords Cosmic strings; domain walls; monopoles; cosmological phase transitions; cosmology of theories beyond the SM; gravitational waves / sources  
  Abstract We show that, when connected with monopoles, the flat D-flat direction breaking the local U(1)B-L symmetry as an extension of the minimal supersymmetric standard model can be responsible for the signal of a stochastic gravitational wave background recently reported by NANOGrav collaborations, while naturally satisfying constraints at high frequency band. Thanks to the flatness of the direction, a phase of thermal inflation arises naturally. The reheating temperature is quite low, and suppresses signals at frequencies higher than the characteristic frequency set by the reheating temperature. Notably, forthcoming spaced based experiments such as LISA can probe the cutoff frequency, providing an indirect clue of the scale of soft SUSY-breaking mass parameter.  
  Address [Maji, Rinku] Jeonbuk Natl Univ, Dept Phys, Lab Symmetry & Struct Universe, Jeonju 54896, South Korea, Email: rinkumaji9792@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001147733000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5967  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
 

 
Author Barenboim, G.; Blinov, N.; Stebbins, A. url  doi
openurl 
  Title Smallest remnants of early matter domination Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 026 - 50pp  
  Keywords cosmology of theories beyond the SM; physics of the early universe; cosmological perturbation theory  
  Abstract The evolution of the universe prior to Big Bang Nucleosynthesis could have gone through a phase of early matter domination which enhanced the growth of small-scale dark matter structure. If this period was long enough, self-gravitating objects formed prior to reheating. We study the evolution of these dense early halos through reheating. At the end of early matter domination, the early halos undergo rapid expansion and eventually eject their matter. We find that this process washes out structure on scales much larger than naively expected from the size of the original halos. We compute the density profiles of the early halo remnants and use them to construct late-time power spectra that include these non-linear effects. We evolve the resulting power spectrum to estimate the properties of microhalos that would form after matter-radiation equality. Surprisingly, cosmologies with a short period of early matter domination lead to an earlier onset of microhalo formation compared to those with a long period. In either case, dark matter structure formation begins much earlier than in the standard cosmology, with most dark matter bound in microhalos in the late universe.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000734341100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5060  
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A. url  doi
openurl 
  Title Dark matter from a complex scalar singlet: the role of dark CP and other discrete symmetries Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 202 - 34pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract We study the case of a pseudo-scalar dark matter candidate which emerges from a complex scalar singlet, charged under a global U(1) symmetry, which is broken both explicitly and spontaneously. The pseudo-scalar is naturally stabilized by the presence of a remnant discrete symmetry: dark CP. We study and compare the phenomenology of several simplified models with only one explicit symmetry breaking term. We find that several regions of the parameter space are able to reproduce the observed dark matter abundance while respecting direct detection and invisible Higgs decay limits: in the resonances of the two scalars, featuring the known as forbidden or secluded dark matter, and through non-resonant Higgs-mediated annihilations. In some cases, combining different measurements would allow one to distinguish the breaking pattern of the symmetry. Moreover, this setup admits a light DM candidate at the sub-GeV scale. We also discuss the situation where more than one symmetry breaking term is present. In that case, the dark CP symmetry may be spontaneously broken, thus spoiling the stability of the dark matter candidate. Requiring that this does not happen imposes a constraint on the allowed parameter space. Finally, we consider an effective field theory approach valid in the pseudo-Nambu-Goldstone boson limit and when the U(1) breaking scale is much larger than the electroweak scale.  
  Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000723081600002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5031  
Permanent link to this record
 

 
Author Garani, R.; Gasparotto, F.; Mastrolia, P.; Munch, H.J.; Palomares-Ruiz, S.; Primo, A. url  doi
openurl 
  Title Two-photon exchange in leptophilic dark matter scenarios Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 212 - 42pp  
  Keywords Cosmology of Theories beyond the SM; Effective Field Theories; Integrable Hierarchies  
  Abstract In leptophilic scenarios, dark matter interactions with nuclei, relevant for direct detection experiments and for the capture by celestial objects, could only occur via loop-induced processes. If the mediator is a scalar or pseudo-scalar particle, which only couples to leptons, the dominant contribution to dark matter-nucleus scattering would take place via two-photon exchange with a lepton triangle loop. The corresponding diagrams have been estimated in the literature under different approximations. Here, we present new analytical calculations for one-body two-loop and two-body one-loop interactions. The two-loop form factors are presented in closed analytical form in terms of generalized polylogarithms up to weight four. In both cases, we consider the exact dependence on all the involved scales, and study the dependence on the momentum transfer. We show that some previous approximations fail to correctly predict the scattering cross section by several orders of magnitude. Moreover, we quantitatively show that form factors in the range of momentum transfer relevant for local galactic dark matter, can be significantly smaller than their value at zero momentum transfer, which is the approach usually considered.  
  Address [Garani, Raghuveer] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000736468500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5068  
Permanent link to this record
 

 
Author Cosme, C.; Dutra, M.; Godfrey, S.; Gray, T. url  doi
openurl 
  Title Testing freeze-in with axial and vector Z ' bosons Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 056 - 27pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract The freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter in the early universe is an appealing alternative to the well-known – and constrained – Weakly Interacting Massive Particle (WIMP) paradigm. Although challenging, the phenomenology of FIMP dark matter has been receiving growing attention and is possible in a few scenarios. In this work, we contribute to this endeavor by considering a Z ' portal to fermionic dark matter, with the Z ' having both vector and axial couplings and a mass ranging from MeV up to PeV. We evaluate the bounds on both freeze-in and freeze-out from direct detection, atomic parity violation, leptonic anomalous magnetic moments, neutrino-electron scattering, collider, and beam dump experiments. We show that FIMPs can already be tested by most of these experiments in a complementary way, whereas WIMPs are especially viable in the Z ' low mass regime, in addition to the Z ' resonance region. We also discuss the role of the axial couplings of Z ' in our results. We therefore hope to motivate specific realizations of this model in the context of FIMPs, as well as searches for these elusive dark matter candidates.  
  Address [Cosme, Catarina; Dutra, Maira; Godfrey, Stephen; Gray, Taylor] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada, Email: catarina.cosme@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000695081900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4962  
Permanent link to this record
 

 
Author Reig, M. url  doi
openurl 
  Title The stochastic axiverse Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 207 - 40pp  
  Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Compactification and String Models  
  Abstract In addition to spectacular signatures such as black hole superradiance and the rotation of CMB polarization, the plenitude of axions appearing in the string axiverse may have potentially dangerous implications. An example is the cosmological overproduction of relic axions and moduli by the misalignment mechanism, more pronounced in regions where the signals mentioned above may be observable, that is for large axion decay constant. In this work, we study the minimal requirements to soften this problem and show that the fundamental requirement is a long period of low-scale inflation. However, in this case, if the inflationary Hubble scale is lower than around O(100) eV, no relic DM axion is produced in the early Universe. Cosmological production of some axions may be activated, via the misalignment mechanism, if their potential minimum changes between inflation and today. As a particular example, we study in detail how the maximal-misalignment mechanism dilutes the effect of dangerous axions and allows the production of axion DM in a controlled way. In this case, the potential of the axion that realises the mechanism shifts by a factor increment theta = pi between the inflationary epoch and today, and the axion starts to oscillate from the top of its potential. We also show that axions with masses m(a) similar to O(1 – 100) H-0 realising the maximal-misalignment mechanism generically behave as dark energy with a decay constant that can take values well below the Planck scale, avoiding problems associated to super-Planckian scales. Finally, we briefly study the basic phenomenological implications of the mechanism and comment on the compatibility of this type of maximally-misaligned quintessence with the swampland criteria.  
  Address [Reig, Mario] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ifis.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000702371800004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4977  
Permanent link to this record
 

 
Author Bernal, N.; Donini, A.; Folgado, M.G.; Rius, N. url  doi
openurl 
  Title FIMP Dark Matter in Clockwork/Linear Dilaton extra-dimensions Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 061 - 29pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Large Extra Dimensions  
  Abstract We study the possibility that Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the Standard Model particles in the framework of a Clockwork/Linear Dilaton (CW/LD) model. We restrict here to the case in which the DM particles are scalar fields. This paper extends our previous study of FIMP's in Randall-Sundrum (RS) warped extra-dimensions. As it was the case in the RS scenario, also in the CW/LD model we find a significant region of the parameter space in which the observed DM relic abundance can be reproduced with scalar DM mass in the MeV range, with a reheating temperature varying from 10 GeV to 10(9) GeV. We comment on the similarities of the results in both extra-dimensional models.  
  Address [Bernal, Nicolas] Univ Antonio Narino, Ctr Invest, Carrera 3 Este 47A-15, Bogota, Colombia, Email: nicolas.bernal@uan.edu.co;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000639271100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4792  
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Lopez-Pavon, J.; Ota, T.; Rosauro-Alcaraz, S. url  doi
openurl 
  Title nu electroweak baryogenesis Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 063 - 28pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; CP viola- tion; Neutrino Physics  
  Abstract We investigate if the CP violation necessary for successful electroweak baryo- genesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singlets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.  
  Address [Fernandez-Martinez, E.; Ota, T.; Rosauro-Alcaraz, S.] Univ Autonoma Madrid, Dept Fis Teor, IFT UAM CSIC, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000582727900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4582  
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Pavon, J.; Rius, N.; Sandner, S. url  doi
openurl 
  Title Relaxing cosmological neutrino mass bounds with unstable neutrinos Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 119 - 44pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Lambda CDM), the Planck collaboration reports Sigma m(v)< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe <tau>(nu) less than or similar to t(U), represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state nu (4) and a Goldstone boson phi, in which nu (i)-> nu (4)phi decays can loosen the neutrino mass bounds up to Sigma m(v) similar to 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)(mu-tau) flavor symmetry, which are otherwise in tension with the current bound on Sigma m(v).  
  Address [Escudero, Miguel] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000601400500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4661  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva