toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Perez-Perez, J.; Amare, J.C.; Bandac, I.C.; Bayo, A.; Borjabad-Sanchez, S.; Calvo-Mozota, J.M.; Cid-Barrio, L.; Hernandez-Antolin, R.; Hernandez-Molinero, B.; Novella, P.; Pelczar, K.; Pena-Garay, C.; Romeo, B.; Ortiz de Solorzano, A.; Sorel, M.; Torrent, J.; Uson, A.; Wojna-Pelczar, A.; Zuzel, G. url  doi
openurl 
  Title Radon Mitigation Applications at the Laboratorio Subterráneo de Canfranc (LSC) Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal Universe  
  Volume 8 Issue 2 Pages 112 - 20pp  
  Keywords radon; neutrinos; HPGe-detector; LSC  
  Abstract The Laboratorio Subterraneo de Canfranc (LSC) is the Spanish national hub for low radioactivity techniques and the associated scientific and technological applications. The concentration of the airborne radon is a major component of the radioactive budget in the neighborhood of the detectors. The LSC hosts a Radon Abatement System, which delivers a radon suppressed air with 1.1 & PLUSMN;0.2 mBq/m(3) of Rn-222. The radon content in the air is continuously monitored with an Electrostatic Radon Monitor. Measurements with the double beta decay demonstrators NEXT-NEW and CROSS and the gamma HPGe detectors show the important reduction of the radioactive background due to the purified air in the vicinity of the detectors. We also discuss the use of this facility in the LSC current program which includes NEXT-100, low background biology experiments and radiopure copper electroformation equipment placed in the radon-free clean room.  
  Address [Perez-Perez, Javier; Bandac, Iulian Catalin; Bayo, Alberto; Borjabad-Sanchez, Silvia; Calvo-Mozota, Jose Maria; Cid-Barrio, Laura; Hernandez-Antolin, Rebecca; Hernandez-Molinero, Beatriz; Pena-Garay, Carlos; Romeo, Beatriz] Lab Subterraneo Canfranc LSC, Canfranc Estn 22880, Spain, Email: javier.perez.perez@uj.edu.pl;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762509500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5143  
Permanent link to this record
 

 
Author Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pena-Garay, C.; Serenelli, A.M.; Song, N.Q. url  doi
openurl 
  Title Updated determination of the solar neutrino fluxes from solar neutrino data Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 132 - 19pp  
  Keywords Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract We present an update of the determination of the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian analysis we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. We then use these results to compare the description provided by different Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with equivalent statistical agreement. We also argue that even with the present experimental precision the solar neutrino data have the potential to improve the accuracy of the solar model predictions.  
  Address [Bergstroem, Johannes; Gonzalez-Garcia, M. C.] Univ Barcelona, Dept Estruct & Constituents Mat, Diagonal 647, E-08028 Barcelona, Spain, Email: bergstrom@ecm.ub.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373050700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2609  
Permanent link to this record
 

 
Author Jimenez, R.; Kitching, T.; Pena-Garay, C.; Verde, L. url  doi
openurl 
  Title Can we measure the neutrino mass hierarchy in the sky? Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 035 - 14pp  
  Keywords cosmological neutrinos; neutrino masses from cosmology; power spectrum; gravitational lensing  
  Abstract Cosmological probes are steadily reducing the total neutrino mass window, resulting in constraints on the neutrino-mass degeneracy as the most significant outcome. In this work we explore the discovery potential of cosmological probes to constrain the neutrino hierarchy, and point out some subtleties that could yield spurious claims of detection. This has an important implication for next generation of double beta decay experiments, that will be able to achieve a positive signal in the case of degenerate or inverted hierarchy of Majorana neutrinos. We find that cosmological experiments that nearly cover the whole sky could in principle distinguish the neutrino hierarchy by yielding 'substantial' evidence for one scenario over the another, via precise measurements of the shape of the matter power spectrum from large scale structure and weak gravitational lensing.  
  Address [Jimenez, Raul; Verde, Licia] Univ Barcelona, ICREA, E-08028 Barcelona, Spain, Email: raul.jimenez@icc.ub.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279490800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 418  
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Pena-Garay, C. url  doi
openurl 
  Title Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 066 - 28pp  
  Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries  
  Abstract We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production phi(0)(e) : phi(0)(mu) : phi(0)(tau) = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, phi(mu), and for the flavour ratios at Earth, R = phi(mu)/phi(e) and S = phi(tau)/phi(mu). CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of phi(mu), R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10(-29) – 10(-27) GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.  
  Address [Bustamante, M.; Gago, A. M.] Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru, Email: mbustamante@pucp.edu.pe  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277473100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 455  
Permanent link to this record
 

 
Author Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N. url  doi
openurl 
  Title Cosmological data analysis of f(R) gravity models Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 004 - 18pp  
  Keywords modified gravity; cosmological parameters from LSS  
  Abstract A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.  
  Address [Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Valencia 46071, Spain, Email: girones@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284825100004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 315  
Permanent link to this record
 

 
Author Borexino Collaboration (Bellini, G. et al); Pena-Garay, C. url  doi
openurl 
  Title Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 11 Pages 112007 - 68pp  
  Keywords  
  Abstract Borexino has been running since May 2007 at the Laboratori Nazionali del Gran Sasso laboratory in Italy with the primary goal of detecting solar neutrinos. The detector a large unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity is optimized for the study of the lower energy part of the spectrum. During Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the Be-7 solar neutrinos ruled out any significant day-night asymmetry of their interaction rate made the first direct observation of the pep neutrinos and set the tightest upper limit on the flux of solar neutrinos produced in the CNO cycle (carbon nitrogen oxigen) where carbon nitrogen and oxygen serve as catalysts in the fusion process. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds quantify their event rates describe the methods for their identification selection or subtraction and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources the detailed modeling of the detector response the ability to define an innermost fiducial volume with extremely low background via software cuts and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the Be-7 neutrino interaction rate. The period the amplitude and the phase of the observed modulation are consistent with the solar origin of these events and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of Phase-I results in the context of the neutrino oscillation physics and solar models are presented.  
  Address [Bellini, G.; Avanzini, M. Buizza; Caccianiga, B.; D'Angelo, D.; Giammarchi, M.; Lombardi, P.; Ludhova, L.; Meroni, E.; Miramonti, L.; Ranucci, G.; Re, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338663100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1856  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C. url  doi
openurl 
  Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 043 - 17pp  
  Keywords neutrino masses from cosmology; double beta decay  
  Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.  
  Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000316989200044 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1434  
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Bird, S.; Pena-Garay, C.; Viel, M. url  doi
openurl 
  Title Non-linear evolution of the cosmic neutrino background Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 019 - 30pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino masses from cosmology  
  Abstract We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference Lambda CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10(11) – 10(15) h(-1) M-circle dot, over a redshift range z = 0 – 2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than similar to 10(13.5) h(-1) M-circle dot. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above similar to 200 h(-1) kpc at z = 0, and are stable with respect to box-size and starting redshift of the simulation. Our findings are particularly important in view of upcoming large-scale structure surveys, like Euclid, that are expected to probe the non-linear regime at the percent level with lensing and clustering observations.  
  Address INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy, Email: villaescusa@oats.inaf.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000316989200020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1435  
Permanent link to this record
 

 
Author Antonelli, V.; Miramonti, L.; Pena-Garay, C.; Serenelli, A. url  doi
openurl 
  Title Solar Neutrinos Type Journal Article
  Year 2013 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2013 Issue Pages 351926 - 34pp  
  Keywords  
  Abstract The study of solar neutrinos has given a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.  
  Address Univ Milan, Dipartimento Fis, I-20133 Milan, Italy, Email: vito.antonelli@mi.infn.it  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000316881700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1392  
Permanent link to this record
 

 
Author Caputo, A.; Pena-Garay, C.; Witte, S.J. url  doi
openurl 
  Title Looking for axion dark matter in dwarf spheroidal galaxies Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 8 Pages 083024 - 6pp  
  Keywords  
  Abstract We study the extent to which the decay of cold dark matter axions can be probed with forthcoming radio telescopes such as the Square Kilometer Array (SKA). In particular, we focus on signals arising from dwarf spheroidal galaxies, where astrophysical uncertainties are reduced and the expected magnetic field strengths are such that signals arising from axion decay may dominate over axion-photon conversion in a magnetic field. We show that with similar to 100 hr of observing time, SKA could improve current sensitivity by 2-3 orders of magnitude-potentially obtaining sufficient sensitivity to begin probing the decay of cold dark matter axions.  
  Address [Caputo, Andrea; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448458600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3788  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva