|   | 
Details
   web
Records
Author Martinez-Mirave, P.; Tamborra, I.; Tortola, M.
Title The Sun and core-collapse supernovae are leading probes of the neutrino lifetime Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 002 - 39pp
Keywords neutrino properties; solar and atmospheric neutrinos; supernova neutrinos
Abstract The large distances travelled by neutrinos emitted from the Sun and core -collapse supernovae together with the characteristic energy of such neutrinos provide ideal conditions to probe their lifetime, when the decay products evade detection. We investigate the prospects of probing invisible neutrino decay capitalising on the detection of solar and supernova neutrinos as well as the diffuse supernova neutrino background (DSNB) in the next -generation neutrino observatories Hyper-Kamiokande, DUNE, JUNO, DARWIN, and RES-NOVA. We find that future solar neutrino data will be sensitive to values of the lifetime -to -mass ratio tau 1 /m 1 and tau 2 /m 2 of O(10 – 1 -10 – 2 ) s/eV. From a core -collapse supernova explosion at 10 kpc, lifetime -to -mass ratios of the three mass eigenstates of O(10 5 ) s/eV could be tested. After 20 years of data taking, the DSNB would extend the sensitivity reach of tau 1 /m 1 to 10 8 s/eV. These results promise an improvement of about 6-15 orders of magnitude on the values of the decay parameters with respect to existing limits.
Address [Martinez-Mirave, Pablo; Tamborra, Irene] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark, Email: pablo.mirave@nbi.ku.dk;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001217801000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6144
Permanent link to this record
 

 
Author Barenboim, G.; Martinez-Mirave, P.; Ternes, C.A.; Tortola, M.
Title Neutrino CPT violation in the solar sector Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 3 Pages 035039 - 10pp
Keywords
Abstract In this paper, we place new bounds on CPT violation in the solar neutrino sector analyzing the results from solar experiments and KamLAND. We also discuss the sensitivity of the next-generation experiments DUNE and Hyper-Kamiokande, which will provide accurate measurements of the solar neutrino oscillation parameters. The joint analysis of both experiments will further improve the precision due to cancellations in the systematic uncertainties regarding the solar neutrino flux. In combination with the next-generation reactor experiment JUNO, the bound on CPT violation in the solar sector could be improved by 1 order of magnitude in comparison with current constraints. The distinguishability among CPT-violating neutrino oscillations and neutrino nonstandard interactions in the solar sector is also addressed.
Address [Barenboim, G.; Martinez-Mirave, P.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Carrer Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001065884700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5692
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N.
Title Highly-parallelized simulation of a pixelated LArTPC on a GPU Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 4 Pages P04034 - 35pp
Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000986658100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5551
Permanent link to this record
 

 
Author Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M.
Title Non-unitary three-neutrino mixing in the early Universe Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 046 - 18pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory
Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000959757500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5516
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F.
Title Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 9 Pages 092012 - 22pp
Keywords
Abstract Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001010953400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5588
Permanent link to this record
 

 
Author Akhmedov, E.; Martinez-Mirave, P.
Title Solar (v(e))over-bar flux: revisiting bounds on neutrino magnetic moments and solar magnetic field Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 144 - 35pp
Keywords Neutrino Interactions; Neutrino Mixing; Non-Standard Neutrino Properties
Abstract The interaction of neutrino transition magnetic dipole moments with magnetic fields can give rise to the phenomenon of neutrino spin-flavour precession (SFP). For Majorana neutrinos, the combined action of SFP of solar neutrinos and flavour oscillations would manifest itself as a small, yet potentially detectable, flux of electron antineutrinos coming from the Sun. Non-observation of such a flux constrains the product of the neutrino magnetic moment μand the strength of the solar magnetic field B. We derive a simple analytical expression for the expected (v(e)) over bar appearance probability in the three-flavour framework and we use it to revisit the existing experimental bounds on μB. A full numerical calculation has also been performed to check the validity of the analytical result. We also present our numerical results in energy-binned form, convenient for analyses of the data of the current and future experiments searching for the solar (v(e)) over bar flux. In addition, we give a comprehensive compilation of other existing limits on neutrino magnetic moments and of the expressions for the probed effective magnetic moments in terms of the fundamental neutrino magnetic moments and leptonic mixing parameters.
Address [Akhmedov, Evgeny] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: akhmedov@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000871184000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5394
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 7 Pages 618 - 25pp
Keywords
Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 +/- 0.6% and 84.1 +/- 0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: leigh.howard.whitehead@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001061746600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5721
Permanent link to this record
 

 
Author Huang, G.Y.; Lindner, M.; Martinez-Mirave, P.; Sen, M.
Title Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 3 Pages 033004 - 18pp
Keywords
Abstract We investigate a consistent scenario of time-varying neutrino masses, and discuss its impact on cosmology, beta decay, and neutrino oscillation experiments. Such time-varying masses are assumed to be generated by the coupling between a sterile neutrino and an ultralight scalar field, which in turn affects the light neutrinos by mixing. We demonstrate how various cosmological bounds, such as those coming from big bang nucleosynthesis, the cosmic microwave background, as well as large scale structures, can be evaded in this model. This scenario can be further constrained using multiple terrestrial experiments. In particular, for beta-decay experiments like KATRIN, nontrivial distortions to the electron spectrum can be induced, even when time-variation is fast and it gets averaged. Furthermore, the presence of time-varying masses of sterile neutrinos will alter the interpretation of light sterile neutrino parameter space in the context of the reactor and gallium anomalies. In addition, we also study the impact of such time-varying neutrino masses on results from the BEST collaboration, which have recently strengthened the gallium anomaly. If confirmed, we find that the time-varying neutrino mass hypothesis could give a better fit to the recent BEST data.
Address [Huang, Guo-yuan; Lindner, Manfred; Sen, Manibrata] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: guoyuan.huang@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000858614800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5363
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 10 Pages 903 - 19pp
Keywords
Abstract Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.
Address [Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000866503200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5386
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 7 Pages 618 - 29pp
Keywords
Abstract DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: clara.cuesta@ciemat.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000826161300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5293
Permanent link to this record