Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Zhang, X., Chang, C., & Gimeno, B. (2019). Multipactor Analysis in Circular Waveguides Excited by TM01 Mode. IEEE Trans. Electron Devices, 66(11), 4943–4951.
Abstract: A series of detailed numerical simulations are used to investigate the properties ofmultipactor breakdown in circularwaveguidespropagating the TM01 mode. AMonte Carlo model is constructed to track the motion of the electrons, study the multipactor scenarios, and predict the multipactor thresholds. The theoretical and numerical analyses indicate that the product of the frequency and the gap (f . D) affects both the intensity of the ponderomotive force and its spatial distribution, which results from the nonuniformity of the radio frequency (RF) field and significantly influences the electrons' trajectoriesandmultipactor trends. The decrease in f . D results in a remarkable enhancement in the magnitude of the ponderomotive force, while the maximal intensity gradually moves toward the half radius R/2 area. Low values of f . D correspond to high ponderomotive potential, which sustains the short-range electrons and triggers the single-sidedmultipactor. In contrast, high values of f . D correspond to low ponderomotive potential, contributing to long-range electrons and exciting the double-sided multipactor. Fitting to the susceptibility diagram produces the border line and a modified f . D threshold of (f . D) th approximate to 338.4 GHz mm, which separates the susceptibility diagram into single-sided, double-sided, andmixed-sided zones. The initial electron energy influences their trajectories at high f . D and low RF power. This effect tends to dominate the multipactor behavior in the mixed-sided region.
Keywords: Circular waveguide; multipactor; ponderomotive force; TM01 mode
|
Berenguer, A., Coves, A., Gimeno, B., Bronchalo, E., & Boria, V. E. (2019). Experimental Study of the Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide. IEEE Microw. Wirel. Compon. Lett., 29(9), 595–597.
Abstract: This letter presents the experimental study of the multipactor threshold in a partially dielectric-loaded rectangular waveguide, whose results validate a multipactor model recently developed by the authors, which includes the charge distribution appearing on the dielectric surface during the multipactor discharge. First, the variation of the multipactor RF voltage threshold has been theoretically analyzed in different waveguide configurations: in an empty waveguide, and also in the cases of a one-sided and two-sided dielectric-loaded waveguides. To reach this aim, an in-house Monte Carlo simulation tool has been developed. The Secondary Electron Yield (SEY) of the metallic and dielectric materials used in the numerical simulations have been measured experimentally. Finally, an aluminum WR-75 symmetric E-plane rectangular waveguide transformer has been designed and fabricated, in which several multipaction tests have been carried out to validate the in-house software tool, demonstrating an excellent agreement between the simulation results and the experimental data.
|
Coves, A., Maestre, H., Archiles, R., Andres, M. V., & Gimeno, B. (2022). Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings. IEEE Access, 10, 18843–18854.
Abstract: A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.
|
Albiol, F., Corbi, A., & Albiol, A. (2019). Densitometric Radiographic Imaging With Contour Sensors. IEEE Access, 7, 18902–18914.
Abstract: We present the technical/physical foundations of a new imaging technique that combines ordinary radiographic information (generated by conventional X-ray settings) with the patient's volume to derive densitometric images. Traditionally, these images provide quantitative information about tissues densities. In our approach, they graphically enhance either soft or bony regions. After measuring the patient's volume with contour recognition devices, the physical traversed lengths within it (as the Roentgen beam intersects the patient) are calculated and pixel-wise associated with the original radiograph (X). In order to derive this map of lengths (L), the camera equations of the X-ray system and the contour sensor are determined. The patient's surface is also translated to the point-of-view of the X-ray beam and all its entrance/exit points are sought with the help of ray-casting methods. The derived L is applied to X as a physical operation (subtraction), obtaining soft tissue-(D-S) or bone-enhanced (D'(B)) figures. In the D-S type, the contained graphical information can be linearly mapped to the average electronic density (traversed by the X-ray beam). This feature represents an interesting proof-of-concept of associating density data to radiographs, but most important, their intensity histogram is objectively compressed, i.e., the dynamic range is more shrunk (compared against the corresponding X). This leads to other advantages: improvement in the visibility of border/edge areas (high gradient), extended manual window level/width manipulations during screening, and immediate correction of underexposed X instances. In the D-B' type, high-density elements are highlighted and easier to discern. All these results can be achieved with low-energy beam exposures, saving costs and dose. Future work will deepen this clinical side of our research. In contrast with other image-based modifiers, the proposed method is grounded on the measurement of a physical entity: the span of the X-ray beam within a body while undertaking a radiographic examination.
|
Luo, D. W. et al, & Montaner-Piza, A. (2025). Seniority Structure in Neutron-Rich Nucleus 128Ag: Evidence for Robustness of N=82 Shell Closure in Silver Isotopes. Phys. Rev. Lett., 134(23), 232502–7pp.
Abstract: The spectroscopic studies of very neutron-rich nucleus 128Ag have been performed for the first time at the Radioactive Isotope Beam Factory of RIKEN. A new seniority isomer with a half-life of 1.60(7) μs has been identified and is proposed to have a spin-parity of 16-with a maximally aligned configuration comprising three proton holes in the g9/2 orbital and one neutron hole in the h11/2 orbital. The new level structure in 128Ag is quite well described by shell model calculations without invoking excitations across the Z = 50 and N = 82 shell gaps, and presents a good case of seniority scheme in odd-odd nuclei in the south vicinity of the double-magic nucleus 132Sn. With a classification of various components of the proton-neutron interaction, the inversion of lowest-lying 9-and 10-states between 128Ag and its neighboring isotone 130In is found to be dynamically ascribed to the seniority-nonconserving proton-neutron interaction components. The structure above 10-up to the 16-isomer in 128Ag shows remarkable similarities to seniority structures in the semimagic nuclei 128Pd and 130Cd. These spectroscopic features in 128Ag indicate that the N = 82 shell closure is still robust in silver isotopes.
|
Das, B. et al, & Algora, A. (2024). Broken seniority symmetry in the semimagic proton mid-shell nucleus 95Rh. Phys. Rev. Res., 6(2), L022038–7pp.
Abstract: Lifetime measurements of low-lying excited states in the semimagic ( N = 50) nucleus 95 Rh have been performed by means of the fast -timing technique. The experiment was carried out using gamma -ray detector arrays consisting of LaBr 3 (Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research ( FAIR ) Phase -0, Darmstadt, Germany. The excited states in 95 Rh were populated primarily via the /3 decays of 95 Pd nuclei, produced in the projectile fragmentation of a 850 MeV / nucleon 124 Xe beam impinging on a 4 g / cm 2 9 Be target. The deduced electromagnetic E2 transition strengths for the gamma -ray cascade within the multiplet structure depopulating from the isomeric I pi = 21 / 2 + state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2 + -> 9 / 2 + ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian.
|
Karuseichyk, I., Sorelli, G., Walschaers, M., Treps, N., & Gessner, M. (2022). Resolving mutually-coherent point sources of light with arbitrary statistics. Phys. Rev. Res., 4(4), 043010–11pp.
Abstract: We analyze the problem of resolving two mutually coherent point sources with arbitrary quantum statistics, mutual phase, and relative and absolute intensity. We use a sensitivity measure based on the method of moments and compare direct imaging with spatial-mode demultiplexing (SPADE), analytically proving advantage of the latter. We show that the moment-based sensitivity of SPADE saturates the quantum Fisher information for all known cases, even for non-Gaussian states of the sources.
|
Szilner, S. et al, & Jurado-Gomez, M. (2024). Quest for Cooper Pair Transfer in Heavy-Ion Reactions: The 206 Pb+118 Sn Case. Phys. Rev. Lett., 133(20), 202501–7pp.
Abstract: In this Letter we report on effects of nucleon-nucleon correlations probed in nucleon transfer reactions with heavy ions. We measured with high efficiency and resolution a complete set of observables for neutron transfer channels in the 206Pb & thorn; 118Sn system employing a large solid angle magnetic spectrometer, which allowed us to study a wide range of internuclear distances via a detailed excitation function. The coupled channel theory, based on an independent particle transfer mechanism, follows the experimental transfer probabilities for one- and two-neutron pick-up and stripping channels. The experimental two-neutron transfer cross sections indicate that in reactions between pair-vibrational (closed shell) and pair-rotational (open shell) nuclei, correlations manifest via pair-addition and pair-removal modes, which constitute one of the elementary modes of excitations in nuclei.
|
NA64 Collaboration(Andreev, Y. M. et al), Molina Bueno, L., & Tuzi, M. (2024). Dark-Sector Search via Pion-Produced η and η' Mesons Decaying Invisibly in the NA64h Detector. Phys. Rev. Lett., 133(12), 121803–6pp.
Abstract: We present the first results from a proof-of-concept search for dark sectors via invisible decays of pseudoscalar eta and eta ' mesons in the NA64h experiment at the CERN SPS. Our novel technique uses the charge-exchange reaction of 50 GeV pi- on nuclei of an active target as the source of neutral mesons. The eta,eta'-> invisible events would exhibit themselves via a striking signature-the complete disappearance of the incoming beam energy in the detector. No evidence for such events has been found with 2.9x109 pions on target accumulated during one day of data taking. This allows us to set a stringent limit on the branching ratio Br(eta'-> invisible) < 2.1 x 10(-4) improving the current bound by a factor of similar or equal to 3. We also set a limit on Br(eta -> invisible) < 1.1 x 10(-4) comparable with the existing one. These results demonstrate the great potential of our approach and provide clear guidance on how to enhance and extend the sensitivity for dark sector physics from future searches for invisible neutral meson decays.
|
Casanovas-Hoste, A. et al, Domingo-Pardo, C., Lerendegui-Marco, J., Tarifeño-Saldivia, A., & Tain, J. L. (2024). Shedding Light on the Origin of Pb-204, the Heaviest s-Process-Only Isotope in the Solar System. Phys. Rev. Lett., 133(5), 052702–8pp.
Abstract: Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the r-process contribution by their stable isobars are defined as s-only nuclei. For a long time the abundance of (204) Pb, the heaviest s-only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance. Besides the impact of uncertainties from stellar models and galactic chemical evolution simulations, this discrepancy was further obscured by rather divergent theoretical estimates for the neutron capture cross section of its radioactive precursor in the neutron-capture flow, 204 Tl ( t( 1/2)=2 1 / 4 3.78 . 78 yr), and by the lack of experimental data on this reaction. We present the first ever neutron capture measurement on (204) Tl, conducted at the CERN neutron time-of-flight facility n_TOF, employing a sample of only 9 mg of 204 Tl produced at the Institute Laue Langevin high flux reactor. By complementing our new results with semiempirical calculations we obtained, at the s-process temperatures of kT approximate to 8 keV and kT approximate to 30 keV, Maxwellian-averaged cross sections (MACS) of 580(168) mb and 260(90) mb, respectively. These figures are about 3% lower and 20% higher than the corresponding values widely used in astrophysical calculations, which were based only on theoretical calculations. By using the new Tl-204 MACS, the uncertainty arising from the( 204) Tl ( n ; gamma) cross section on the s-process abundance of Pb-204 has been reduced from similar to 30% down to & thorn;8%= = – 6% , and the s-process calculations are in agreement with the latest solar system abundance of Pb-204 reported by K. Lodders in 2021.
|