toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Pallis, C. (2014). Induced-gravity in inflation no-scale supergravity and beyond. J. Cosmol. Astropart. Phys., 08(8), 057–20pp.
toggle visibility
Lesgourgues, J., & Pastor, S. (2014). Neutrino cosmology and Planck. New J. Phys., 16, 065002–24pp.
toggle visibility
Eisenstein, D. J. et al, & Mena, O. (2011). SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems. Astron. J., 142(3), 72–24pp.
toggle visibility
Choi, K. Y., Lopez-Fogliani, D. E., Muñoz, C., & Ruiz de Austri, R. (2010). Gamma-ray detection from gravitino dark matter decay in the μnu SSM. J. Cosmol. Astropart. Phys., 03(3), 028–14pp.
toggle visibility
Boubekeur, L., Choi, K. Y., Ruiz de Austri, R., & Vives, O. (2010). The degenerate gravitino scenario. J. Cosmol. Astropart. Phys., 04(4), 005–26pp.
toggle visibility
Jimenez, R., Kitching, T., Pena-Garay, C., & Verde, L. (2010). Can we measure the neutrino mass hierarchy in the sky? J. Cosmol. Astropart. Phys., 05(5), 035–14pp.
toggle visibility
Barenboim, G., & Park, W. I. (2016). New- vs. chaotic- inflations. J. Cosmol. Astropart. Phys., 02(2), 061–20pp.
toggle visibility
Stadler, J., Boehm, C., & Mena, O. (2020). Is it mixed dark matter or neutrino masses? J. Cosmol. Astropart. Phys., 01(1), 039–18pp.
toggle visibility
Reig, M. (2019). On the high-scale instanton interference effect: axion models without domain wall problem. J. High Energy Phys., 08(8), 167–13pp.
toggle visibility
Escudero, M., Hooper, D., Krnjaic, G., & Pierre, M. (2019). Cosmology with a very light Lmu – Ltau gauge boson. J. High Energy Phys., 03(3), 071–29pp.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva