|   | 
Details
   web
Records
Author Mena, O.; Palomares-Ruiz, S.; Vincent, A.C.
Title Flavor Composition of the High-Energy Neutrino Events in IceCube Type Journal Article
Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 113 Issue 9 Pages 091103 - 5pp
Keywords
Abstract The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this Letter, we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha(e:)alpha(mu):alpha tau)(circle plus). Although the 7: 21 track-to-shower ratio is naively favored for the canonical (1:1:1)(circle plus) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E-2 energy spectrum, (1:1:1)(circle plus). at Earth is disfavored at 81% C. L. If this proportion does not change, 6 more years of data would be needed to exclude (1:1:1)(circle plus) at Earth at 3 sigma C.L. Indeed, with the recently released 3-yr data, that flavor composition is excluded at 92% C. L. The best fit is obtained for (1:0:0)(circle plus). at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.
Address [Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000341292800005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1920
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Melchiorri, A.; Mena, O.
Title Axion cold dark matter: Status after Planck and BICEP2 Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 4 Pages 043534 - 11pp
Keywords
Abstract We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon acoustic oscillation data, including those from the baryon oscillation spectroscopic survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario and for Delta(QCD) = 200 MeV, the full data set implies that the axion mass m(a) = 82.2 +/- 1.1 μeV [corresponding to the Peccei-Quinn symmetry being broken at a scale f(a) = (7.54 +/- 0.10) x 10(10) GeV], or m(a) = 76.6 +/- 2.6 μeV [f(a) = (8.08 +/- 0.27) x 10(10) GeV] when we allow for a nonstandard effective number of relativistic species N-eff. We also find a 2 sigma preference for N-eff > 3.046. The limit on the sum of neutrino masses is Sigma m(v) < 0.25 eV at 95% C.L. for N-eff = 3.046, or Sigma m(v) < 0.47 eV when N-eff is a free parameter. Considering extended scenarios where either the dark energy equation-of-state parameter w, the tensor spectral index n(t), or the running of the scalar index dn(s)/d ln k is allowed to vary does not change significantly the axion mass-energy density constraints. However, in the case of the full data set exploited here, there is a preference for a nonzero tensor index or scalar running, driven by the different tensor amplitudes implied by the Planck and BICEP2 observations. We also study the effect on our estimates of theoretical uncertainties, in particular the imprecise knowledge of the QCD scale Delta(QCD), in the calculation of the temperature-dependent axion mass. We find that in the simplest ADM scenario the Planck + WP data set implies that the axion mass m(a) = 63.7 +/- 1.2 μeV for Delta(QCD) = 400 MeV. We also comment on the possibility that axions do not make up for all the dark matter, or that the contribution of string-produced axions has been grossly underestimated; in that case, the values that we find for the mass can conservatively be considered as lower limits. Dark matter axions with mass in the 60-80 μeV (corresponding to an axion-photon coupling G(a gamma gamma) similar to 10(-14) GeV-1) range can, in principle, be detected by looking for axion-to-photon conversion occurring inside a tunable microwave cavity permeated by a high-intensity magnetic field, and operating at a frequency nu similar or equal to 15-20 GHz. This is out of the reach of current experiments like the axion dark matter experiment (limited to a maximum frequency of a few GHzs), but is, on the other hand, within the reach of the upcoming axion dark matter experiment-high frequency experiment that will explore the 4-40 GHz frequency range and then be sensitive to axion masses up to similar to 160 μeV.
Address [Di Valentino, Eleonora; Giusarma, Elena; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000340890100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1893
Permanent link to this record
 

 
Author Barranco, L.; Boubekeur, L.; Mena, O.
Title Model-independent fit to Planck and BICEP2 data Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 6 Pages 063007 - 7pp
Keywords
Abstract Inflation is the leading theory to describe elegantly the initial conditions that led to structure formation in our Universe. In this paper, we present a novel phenomenological fit to the Planck, WMAP polarization (WP) and the BICEP2 data sets using an alternative parametrization. Instead of starting from inflationary potentials and computing the inflationary observables, we use a phenomenological parametrization due to Mukhanov, describing inflation by an effective equation of state, in terms of the number of e-folds and two phenomenological parameters alpha and beta. Within such a parametrization, which captures the different inflationary models in a model-independent way, the values of the scalar spectral index n(s), its running and the tensor-to-scalar ratio r are predicted, given a set of parameters (alpha, beta). We perform a Markov Chain Monte Carlo analysis of these parameters, and we show that the combined analysis of Planck and WP data favors the Starobinsky and Higgs inflation scenarios. Assuming that the BICEP2 signal is not entirely due to foregrounds, the addition of this last data set prefers instead the phi(2) chaotic models. The constraint we get from Planck and WP data alone on the derived tensor-to-scalar ratio is r < 0.18 at 95% C.L., value which is consistent with the one quoted from the BICEP2 Collaboration analysis, r = 0.16(-0.05)(+0-06), after foreground subtraction. This is not necessarily at odds with the 2 sigma tension found between Planck and BICEP2 measurements when analyzing data in terms of the usual n(s) and r parameters, given that the parametrization used here, for the preferred value n(s) similar or equal to 0.96, allows only for a restricted parameter space in the usual (n(s), r) plane.
Address [Barranco, Laura; Boubekeur, Lotfi; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000342128700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1933
Permanent link to this record
 

 
Author Eisenstein, D.J. et al; Mena, O.
Title SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems Type Journal Article
Year 2011 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 142 Issue 3 Pages 72 - 24pp
Keywords cosmology: observations; Galaxy: evolution; planets and satellites: detection; surveys
Abstract Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Ly alpha forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z approximate to 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = lambda/lambda Delta approximate to 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R approximate to 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 μm < lambda < 1.70 μm) spectra of 105 evolved, late-type stars, measuring separate abundances for similar to 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 ms(-1), similar to 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.
Address [Eisenstein, DJ; Fan, XH; Jiang, LH; Maseman, P; McGreer, ID; Rieke, GH; Rieke, MJ; Young, E] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000294669700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 754
Permanent link to this record
 

 
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L.
Title The dark side of curvature Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 008 - 17pp
Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR
Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000276103000026 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 465
Permanent link to this record