toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Domingo-Pardo, C. url  doi
openurl 
  Title i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 825 Issue Pages 78-86  
  Keywords Radiative neutron capture; Neutron time-of-flight; Cross-section; Pulse-height weighting technique; Compton imaging  
  Abstract A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.  
  Address [Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376713700010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2686  
Permanent link to this record
 

 
Author Bonilla, C.; Sokolowska, D.; Darvishi, N.; Diaz-Cruz, J.L.; Krawczyk, M. url  doi
openurl 
  Title IDMS: inert dark matter model with a complex singlet Type Journal Article
  Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 43 Issue 6 Pages 065001 - 39pp  
  Keywords CP violation; inert doublet model; complex singlet  
  Abstract We study an extension of the inert doublet model (IDM) that includes an extra complex singlet of the scalars fields, which we call the IDMS. In this model there are three Higgs particles, among them a SM-like Higgs particle, and the lightest neutral scalar, from the inert sector, remains a viable dark matter (DM) candidate. We assume a non-zero complex vacuum expectation value for the singlet, so that the visible sector can introduce extra sources of CP violation. We construct the scalar potential of IDMS, assuming an exact Z(2) symmetry, with the new singlet being Z(2)-even, as well as a softly broken U(1) symmetry, which allows a reduced number of free parameters in the potential. In this paper we explore the foundations of the model, in particular the masses and interactions of scalar particles for a few benchmark scenarios. Constraints from collider physics, in particular from the Higgs signal observed at the Large Hadron Collider with M-h approximate to 125 GeV, as well as constraints from the DM experiments, such as relic density measurements and direct detection limits, are included in the analysis. We observe significant differences with respect to the IDM in relic density values from additional annihilation channels, interference and resonance effects due to the extended Higgs sector.  
  Address [Bonilla, Cesar] Univ Valencia, CSIC, Inst Fis Corpuscular, Apdo 22085, E-46071 Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376276900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2687  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Izmaylov, A.; Sorel, M.; Stamoulis, P. url  doi
openurl 
  Title Upper bound on neutrino mass based on T2K neutrino timing measurements Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 1 Pages 012006 - 15pp  
  Keywords  
  Abstract The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV/c(2) range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be m(v)(2) < 5.6 MeV2/c(4).  
  Address [Kitching, P.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB, Canada  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369325800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2544  
Permanent link to this record
 

 
Author Barenboim, G.; Bernabeu, J.; Mitsou, V.A.; Romero Adam, E.; Vives, O. url  doi
openurl 
  Title METing SUSY on the Z peak Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 2 Pages 57 - 13pp  
  Keywords  
  Abstract Recently the ATLAS experiment announced a 3 sigma excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E-T(miss) > 225 GeV and H-T > 600 GeV, to be compared with 10.6 +/- 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m((g) over bar) less than or similar to 1.2 TeV, together with a heavy neutralino NLSP of m((chi) over bar) greater than or similar to 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features: light gluinos, or heavy particles with a strong production cross section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out.  
  Address [Barenboim, G.; Bernabeu, J.; Vives, O.] Univ Valencia, Dept Fis Teor, C Dr Moliner 50, E-46100 Burjassot, Spain, Email: oscar.vives@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375278800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2662  
Permanent link to this record
 

 
Author Alekhin, S. et al; Hernandez, P. url  doi
openurl 
  Title A facility to search for hidden particles at the CERN SPS: the SHiP physics case Type Journal Article
  Year 2016 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 79 Issue 12 Pages 124201 - 137pp  
  Keywords beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons  
  Abstract This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 μand to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.  
  Address [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: oleg.ruchayskiy@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387025400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2852  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva