|   | 
Details
   web
Records
Author Arguelles, C.A.; Muñoz, V.; Shoemaker, I.M.; Takhistov, V.
Title Hadrophilic light dark matter from the atmosphere Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 833 Issue Pages 137363 - 6pp
Keywords
Abstract Light sub-GeV dark matter (DM) constitutes an underexplored target, beyond the optimized sensitivity of typical direct DM detection experiments. We comprehensively investigate hadrophilic light DM produced from cosmic-ray collisions with the atmosphere. The resulting relativistic DM, originating from meson decays, can be efficiently observed in variety of experiments, such as XENON1T. We include for the first time decays of eta, eta' and K+ mesons, leading to improved limits for DM masses above few hundred MeV. We incorporate an exact treatment of the DM attenuation in Earth and demonstrate that nuclear form factor effects can significantly impact the resulting testable DM parameter space. Further, we establish projections for upcoming experiments, such as DARWIN, over a wide range of DM masses below the GeV scale.
Address [Arguelles, Carlos A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: carguelles@fas.harvard.edu;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000865640700036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5388
Permanent link to this record
 

 
Author Garcia Soto, A.; Garg, D.; Reno, M.H.; Arguelles, C.A.
Title Probing quantum gravity with elastic interactions of ultrahigh-energy neutrinos Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 033009 - 9pp
Keywords
Abstract The next generation of radio telescopes will be sensitive to low-scale quantum gravity by measuring ultrahigh-energy neutrinos. In this work, we demonstrate for the first time that neutrino-nucleon soft interactions induced by TeV-scale gravity would significantly increase the number of events detected by the IceCube-Gen2 radio array in the EeV regime. However, we show that these experiments cannot measure the total cross section using only the angular and energy information of the neutrino flux, unless assumptions on the underlying inelasticity distribution of neutral interactions are made.
Address [Garcia-Soto, A.; Arguelles, C. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001004183600015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5557
Permanent link to this record