toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Molina, F.; Aguilera, P.; Romero-Barrientos, J.; Arellano, H.F.; Agramunt, J.; Medel, J.; Morales, J.R.; Zambra, M. doi  openurl
  Title Energy distribution of the neutron flux measurements at the Chilean Reactor RECH-1 using multi-foil neutron activation and the Expectation Maximization unfolding algorithm Type Journal Article
  Year 2017 Publication Applied Radiation and Isotopes Abbreviated Journal Appl. Radiat. Isot.  
  Volume 129 Issue Pages 28-34  
  Keywords  
  Abstract We present a methodology to obtain the energy distribution of the neutron flux of an experimental nuclear reactor, using multi-foil activation measurements and the Expectation Maximization unfolding algorithm, which is presented as an alternative to well known unfolding methods such as GRAVEL. Self-shielding flux corrections for energy bin groups were obtained using MCNP6 Monte Carlo simulations. We have made studies at the at the Dry Tube of RECH-1 obtaining fluxes of 1.5(4) x 10(13) cm(-2) s(-1) for the thermal neutron energy region, 1.9(5) x 10(12) cm(-2) s(-1) for the epithermal neutron energy region, and 4.3(11) x 10(11) cm(-2) s(-1) for the fast neutron energy region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413058200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3326  
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A. doi  openurl
  Title Evaluation of modern camera calibration techniques for conventional diagnostic X-ray imaging settings Type Journal Article
  Year 2017 Publication Radiological Physics and Technology Abbreviated Journal Radiol. Phys. Technol.  
  Volume 10 Issue 1 Pages 68-81  
  Keywords Conventional X-ray camera calibration; Detector resolution; Intrinsic and extrinsic parameters; Zhang's method; Direct linear transform; Tsai's approach  
  Abstract We explore three different alternatives for obtaining intrinsic and extrinsic parameters in conventional diagnostic X-ray frameworks: the direct linear transform (DLT), the Zhang method, and the Tsai approach. We analyze and describe the computational, operational, and mathematical background differences for these algorithms when they are applied to ordinary radiograph acquisition. For our study, we developed an initial 3D calibration frame with tin cross-shaped fiducials at specific locations. The three studied methods enable the derivation of projection matrices from 3D to 2D point correlations. We propose a set of metrics to compare the efficiency of each technique. One of these metrics consists of the calculation of the detector pixel density, which can be also included as part of the quality control sequence in general X-ray settings. The results show a clear superiority of the DLT approach, both in accuracy and operational suitability. We paid special attention to the Zhang calibration method. Although this technique has been extensively implemented in the field of computer vision, it has rarely been tested in depth in common radiograph production scenarios. Zhang's approach can operate on much simpler and more affordable 2D calibration frames, which were also tested in our research. We experimentally confirm that even three or four plane-image correspondences achieve accurate focal lengths.  
  Address [Albiol, Francisco; Corbi, Alberto] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: alberto.corbi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Japan Kk Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1865-0333 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405867100009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3238  
Permanent link to this record
 

 
Author Ma, Y.Z.; Vijande, J.; Ballester, F.; Tedgren, A.C.; Granero, D.; Haworth, A.; Mourtada, F.; Fonseca, G.P.; Zourari, K.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.; Chamberland, M.J.P.; Thomson, R.M.; Verhaegen, F.; Beaulieu, L. doi  openurl
  Title A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate Ir-192 brachytherapy Type Journal Article
  Year 2017 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 44 Issue 11 Pages 5961-5976  
  Keywords Ir-192; HDR brachytherapy; model based dose calculation; Monte Carlo methods; shielded applicator; TG-186  
  Abstract PurposeA joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) Ir-192 shielded applicator has been designed and benchmarked. MethodsA generic HDR Ir-192 shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 Ir-192 source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra((R)) Brachy with Advanced Collapsed-cone Engine, ACE, and BrachyVision ACUROS) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported source centered in water and source displaced test cases, and the new source centered in applicator test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. ResultsThe local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the source centered in water and source displaced test cases and for the clinically relevant part of the unshielded volume in the source centered in applicator case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. ConclusionsThe combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR Ir-192 brachytherapy.  
  Address [Ma, Yunzhi; Beaulieu, Luc] CHU Quebec, Dept Radio Oncol & Axe Oncol, Ctr Rech, Quebec City, PQ G1R 2J6, Canada, Email: yunzhi.Ma@crchuq.ulaval.ca  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414970800039 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3370  
Permanent link to this record
 

 
Author Kim, J.; Ko, P.; Park, W.I. url  doi
openurl 
  Title Higgs-portal assisted Higgs inflation with a sizeable tensor-to-scalar ratio Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 003 - 16pp  
  Keywords inflation; particle physics – cosmology connection; physics of the early universe  
  Abstract We show that the Higgs portal interactions involving extra dark Higgs field can save generically the original Higgs inflation of the standard model (SM) from the problem of a deep non-SM vacuum in the SM Higgs potential. Specifically, we show that such interactions disconnect the top quark pole mass from inflationary observables and allow multi-dimensional parameter space to save the Higgs inflation, thanks to the additional parameters (the dark Higgs boson mass m(phi), the mixing angle a between the SM Higgs H and dark Higgs Phi, and the mixed quartic coupling) affecting RG-running of the Higgs quartic coupling. The effect of Higgs portal interactions may lead to a larger tensor-to-scalar ratio, 0.08 less than or similar to r less than or similar to 0.1, by adjusting relevant parameters in wide ranges of alpha and m(phi), some region of which can be probed at future colliders. Performing a numerical analysis we find an allowed region of parameters, matching the latest Planck data.  
  Address [Kim, Jinsu; Ko, Pyungwon] Korea Inst Adv Study, Quantum Universe Ctr, 85 Hoegiro Dongdaemungu, Seoul 02455, South Korea, Email: kimjinsu@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399455000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3080  
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P. url  doi
openurl 
  Title Evidence for CP violation in B+ -> K*(892)(+)pi(0) from a Dalitz plot analysis of B+ -> K-S(0) pi(+)pi(0) decays Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 7 Pages 072001 - 21pp  
  Keywords  
  Abstract We report a Dalitz plot analysis of charmless hadronic decays of charged B mesons to the final state K-S(0)pi(1) pi(0) using the full BABAR data set of 470.9 +/- 2.8 million B (B) over bar events collected at the gamma (4S) resonance. We measure the overall branching fraction and CP asymmetry to be B(B+ -> K-0 pi(+)pi(0)) = (31.8 +/- 1.8 +/- 2.1(-0.0)(+6.0)) x 10(-6) and A(CP)(B+ -> K-0 pi(+)pi(0)) = 0.07 +/- 0.05 +/- 0.03(-0.03)(+0.02), where the uncertainties are statistical, systematic, and due to the signal model, respectively. This is the first measurement of the branching fraction for B+ -> K-0 pi(+)pi(0). We find first evidence of a CP asymmetry in B+ -> K*(892)(+) pi(0) decays: A(CP)(B+ -> K*(892)(+)pi(0)) = -0.52 +/- 0.14 +/- 0.04(-0.02)(+0.04). The significance of this asymmetry, including systematic and model uncertainties, is 3.4 standard deviations. We also measure the branching fractions and CP asymmetries for three other intermediate decay modes.  
  Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000412031400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3314  
Permanent link to this record
 

 
Author Buchta, S.; Chachamis, G.; Draggiotis, P.; Rodrigo, G. url  doi
openurl 
  Title Numerical implementation of the loop-tree duality method Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 5 Pages 274 - 15pp  
  Keywords  
  Abstract We present a first numerical implementation of the loop-tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs.  
  Address [Buchta, Sebastian; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, Valencia 46980, Spain, Email: sbuchta@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400642800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3115  
Permanent link to this record
 

 
Author Allanach, B.C.; Martin, S.P.; Robertson, D.G.; Ruiz de Austri, R. url  doi
openurl 
  Title The inclusion of two-loop SUSYQCD corrections to gluino and squark pole masses in the minimal and next-to-minimal supersymmetric standard model: SOFTSUSY3.7 Type Journal Article
  Year 2017 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 219 Issue Pages 339-345  
  Keywords Gluino; Squark; MSSM; NMSSM  
  Abstract We describe an extension of the SOFTSUSY spectrum calculator to include two-loop supersymmetric QCD (SUSYQCD) corrections of order O(alpha(2)(s)) to gluino and squark pole masses, either in the minimal supersymmetric standard model (MSSM) or the next-to-minimal supersymmetric standard model (NMSSM). This document provides an overview of the program and acts as a manual for the new version of SOFTSUSY, which includes the increase in accuracy in squark and gluino pole mass predictions. Program summary Program title: SOFTSUSY Program Files doi: http://dx.doLorg/10.17632/sh77x9j7hs.1 Licensing provisions: GNU GPLv3 Programming language: C++, fortran, C Nature of problem: Calculating supersymmetric particle spectrum, mixing parameters and couplings in the MSSM or the NMSSM. The solution to the renormalization group equations must be consistent with theoretical boundary conditions on supersymmetry breaking parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested fixed point iteration. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CP-conserving). If the parameter point under investigation is nonphysical for some reason (for example because the electroWeak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the MSSM (R-parity conserving or violating) or the real R-parity conserving NMSSM only. Journal reference of previous version: Comput. Phys. Comm. 189 (2015) 192. Does the new version supersede the previous version?: Yes. Reasons for the new version: It is desirable to improve the accuracy of the squark and gluinos mass predictions, since they strongly affect supersymmetric particle production cross-sections at colliders. Summary of revisions: The calculation of the squark and gluino pole masses is extended to be of next-to next-to leading order in SUSYQCD, i.e. including terms up to O(g(s)(4)/(16 pi(2))(2)). Additional comments: Program obtainable from http://softsusy.hepforge.org/  
  Address [Allanach, B. C.] Univ Cambridge, DAMTP, CMS, Wilberforce Rd, Cambridge CB3 0WA, England, Email: rruiz@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000407984100030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3258  
Permanent link to this record
 

 
Author Adhikari, R. et al; Pastor, S.; Valle, J.W.F. url  doi
openurl 
  Title A White Paper on keV sterile neutrino Dark Matter Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 025 - 247pp  
  Keywords cosmological neutrinos; dark matter experiments; dark matter theory; particle physics – cosmology connection  
  Abstract We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved – cosmology, astrophysics, nuclear, and particle physics – in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.  
  Address [Drewes, M.; Ibarra, A.; Lasserre, T.; Oberauer, L.; Schoenert, S.] Tech Univ Munich, Phys Dept & Excellence Cluster Univ, James Franck Str 1, D-85748 Garching, Germany, Email: marcodrewes@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399409800025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3109  
Permanent link to this record
 

 
Author Pena-Garay, C.; Verde, L.; Jimenez, R. url  doi
openurl 
  Title Neutrino footprint in large scale structure Type Journal Article
  Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 15 Issue Pages 31-34  
  Keywords Cosmology; Neutrinos; Large scale structure  
  Abstract Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.  
  Address [Verde, Licia; Jimenez, Raul] Univ Barcelona, ICREA, Marti & Franques 1, E-08028 Barcelona, Spain, Email: liciaverde@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000401825700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3138  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 7 Pages 490 - 73pp  
  Keywords  
  Abstract The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.  
  Address [Jackson, P.; Lee, L.; Petridis, A.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia, Email: atlas.publications@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406426400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3242  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva