toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V.; Ladarescu, I.; Redondo, M.L.; Tain, J.L.; Tolosa, A.; Domingo-Pardo, C.; Calvino, F.; Casanovas, A.; Tarifeño-Saldivia, A.; Alcayne, V.; Cano-Ott, D.; Martinez, T.; Guerrero, C.; Barbagallo, M.; Macina, D.; Bacak, M. doi  openurl
  Title A first prototype of C6D6 total-energy detector with SiPM readout for neutron capture time-of-flight experiments Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 985 Issue Pages 164709 - 8pp  
  Keywords Silicon photomultiplier; Radiation detectors; Time-of-flight; Radiative capture; Total energy detector; Pulse-height weighting technique  
  Abstract Low efficiency total-energy detectors (TEDs) are one of the main tools for neutron capture cross section measurements utilizing the time-of-flight (TOF) technique. State-of-the-art TEDs are based on a C6D6 liquid-scintillation cell optically coupled to a fast photomultiplier tube. The large photomultiplier tube represents yet a significant contribution to the so-called neutron sensitivity background, which is one of the most conspicuous sources of uncertainty in this type of experiments. Here we report on the development of a first prototype of a TED based on a silicon-photomultiplier (SiPM) readout, thus resulting in a lightweight and much more compact detector. Apart from the envisaged improvement in neutron sensitivity, the new system uses low voltage (+28 V) and low current supply (-50 mA), which is more practical than the-kV supply required by conventional photomultipliers. One important difficulty hindering the earlier implementation of SiPM readout for this type of detector was the large capacitance for the output signal when all pixels of a SiPM array are summed together. The latter leads to long pulse rise and decay times, which are not suitable for time-of-flight experiments. In this work we demonstrate the feasibility of a Schottky-diode multiplexing readout approach, that allows one to preserve the excellent timing properties of SiPMs, hereby paving the way for their implementation in future neutron TOF experiments.  
  Address [Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V; Ladarescu, I; Redondo, M. Lopez; Tain, J. L.; Tolosa, A.; Domingo-Pardo, C.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: dacaldia@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000592358200019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4638  
Permanent link to this record
 

 
Author Fernandez-Tejero, J.; Bartl, U.; Docke, M.; Fadeyev, V.; Fleta, C.; Hacker, J.; Hommels, B.; Lacasta, C.; Parzefall, U.; Soldevila, U.; Stocker, G.; Ullan, M.; Unno, Y. doi  openurl
  Title Design and evaluation of large area strip sensor prototypes for the ATLAS Inner Tracker detector Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 981 Issue Pages 164536 - 6pp  
  Keywords ATLAS; Silicon strip sensors; Large area silicon sensors; Layout design; Prototype evaluation; Market survey  
  Abstract The ATLAS community is facing the last stages prior to the production of the upgraded silicon strip Inner Tracker for the High-Luminosity Large Hadron Collider. An extensive Market Survey was carried out in order to evaluate the capability of different foundries to fabricate large area silicon strip sensors, satisfying the ATLAS specifications. The semiconductor manufacturing company, Infineon Technologies AG, was one of the two foundries, along with Hamamatsu Photonics K.K., that reached the last stage of the evaluation for the production of the new devices. The full prototype wafer layout for the participation of Infineon, called ATLAS17LS-IFX, was designed using a newly developed Python-based Automatic Layout Generation Tool, able to rapidly design sensors with different characteristics and dimensions based on a few geometrical and technological input parameters. This work presents the layout design process and the results obtained from the evaluation of the new Infineon large area sensors before and after proton and neutron irradiations, up to fluences expected in the inner layers of the future ATLAS detector.  
  Address [Fernandez-Tejero, J.; Fleta, C.; Ullan, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000581799800023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4579  
Permanent link to this record
 

 
Author Ruhr, F. et al; Escobar, C.; Miñano, M. doi  openurl
  Title Testbeam studies of barrel and end-cap modules for the ATLAS ITk strip detector before and after irradiation Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 979 Issue Pages 164430 - 6pp  
  Keywords Particle physics; Tracking detectors; ATLAS; HL-LHC; Test beam  
  Abstract In order to cope with the occupancy and radiation doses expected at the High-Luminosity LHC, the ATLAS experiment will replace its Inner Detector with an all-silicon Inner Tracker (ITk), consisting of pixel and strip subsystems. In the last two years, several prototype ITk strip modules have been tested using beams of high energy electrons produced at the DESY-II testbeam facility. Tracking was provided by EUDET telescopes. The modules tested are built from two sensor types: the rectangular ATLAS17LS, which will be used in the outer layers of the central barrel region of the detector, and the annular ATLAS12EC, which will be used in the innermost ring (R0) of the forward region. Additionally, a structure with two RO modules positioned back-to-back has been measured, demonstrating space point reconstruction using the stereo angle of the strips. Finally, one barrel and one RO module have been measured after irradiation to 40% beyond the expected end-of-lifetime fluence. The data obtained allow for thorough tests of the module performance, including charge collection, noise occupancy, detection efficiency, and tracking performance. The results give confidence that the ITk strip detector will meet the requirements of the ATLAS experiment.  
  Address [Ruehr, F.; Argos, C. Garcia; Hauser, M.; Moos, F.; Rodriguez, A. Rodriguez; Sperlich, D.; Wiik-Fuchs, L.] Albert Ludwigs Univ Freiburg, Phys Inst, Freiburg, Germany, Email: frederik.ruehr@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000573295200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4548  
Permanent link to this record
 

 
Author Hara, K. et al; Escobar, C.; Garcia, C.; Lacasta, C.; Miñano, M.; Soldevila, U. doi  openurl
  Title Charge collection study with the ATLAS ITk prototype silicon strip sensors ATLAS17LS Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 983 Issue Pages 164422 - 6pp  
  Keywords ATLAS ITk; Microstrip sensor; Charge collection; Radiation damage  
  Abstract The inner tracker of the ATLAS detector is scheduled to be replaced by a completely new silicon-based inner tracker (ITk) for the Phase-II of the CERN LHC (HL-LHC). The silicon strip detector covers the volume 40 < R < 100 cm in the radial and vertical bar z vertical bar <300 cm in the longitudinal directions. The silicon sensors for the detector will be fabricated using the n(+)-on-p 6-inch wafer technology, for a total of 22,000 wafers. Intensive studies were carried out on the final prototype sensors ATLAS17LS fabricated by Hamamatsu Photonics (HPK). The charge collection properties were examined using penetrating Sr-90 beta-rays and the ALIBAVA fast readout system for the miniature sensors of 1 cm xl cm in area. The samples were irradiated by protons in the 27 MeV Birmingham Cyclotron, the 70 MeV CYRIC at Tohoku University, and the 24 GeV CERN-PS, and by neutrons at Ljubljana TAIGA reactor for fluence values up to 2 x 10(15) n(eq)/cm(2). The change in the charge collection with fluence was found to be similar to the previous prototype ATLAS12, and acceptable for the ITk. Sensors with two active thicknesses, 300 μm (standard) and 240 μm (thin), were compared and the difference in the charge collection was observed to be small for bias voltages up to 500 V. Some samples were also irradiated with gamma radiation up to 2 MGy, and the full depletion voltage was found to decrease with the dose. This was caused by the Compton electrons due to the( 60)Co gamma radiation. To summarize, the design of the ATLAS17LS and technology for its fabrication have been verified for implementation in the ITk. We are in the stage of sensor pre-production with the first sensors already delivered in January of 2020.  
  Address [Hara, K.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan, Email: hara@hep.px.tsukuba.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000581808300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4606  
Permanent link to this record
 

 
Author Fernandez-Tejero, J. et al; Soldevila, U. doi  openurl
  Title Humidity sensitivity of large area silicon sensors: Study and implications Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 978 Issue Pages 164406 - 6pp  
  Keywords Humidity sensitivity; Large area silicon sensors; Slim-edge; HL-LHC  
  Abstract The production of large area sensors is one of the main challenges that the ATLAS collaboration faces for the new Inner-Tracker full-silicon detector. During the prototype fabrication phase for the High Luminosity Large Hadron Collider upgrade, several ATLAS institutes observed indications of humidity sensitivity of large area sensors, even at relative humidities well below the dew point. Specifically, prototype Barrel and End-Cap silicon strip sensors fabricated in 6-inch wafers manifest a prompt decrease of the breakdown voltage when operating under high relative humidity, adversely affecting the performance of the sensors. In addition to the investigation of these prototype sensors, a specific fabrication batch with special passivation is also studied, allowing for a deeper understanding of the responsible mechanisms. This work presents an extensive study of this behaviour on large area sensors. The locations of the hotspots at the breakdown voltage at high humidity are revealed using different infrared thermography techniques. Several palliative treatments are attempted, proving the influence of sensor cleaning methods, as well as baking, on the device performance, but no improvement on the humidity sensitivity was achieved. Furthermore, a study of the incidence of the sensitivity in different batches is also presented, introducing a hypothesis of the origins of the humidity sensitivity associated to the sensor edge design, together with passivation thickness and conformity. Several actions to be taken during sensor production and assembly are extracted from this study, in order to minimize the impact of humidity sensitivity on the performance of large area silicon sensors for High Energy Physics experiments.  
  Address [Fernandez-Tejero, J.; Avino, O.; Fleta, C.; Ullan, M.; Vellvehi, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000560076700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4504  
Permanent link to this record
 

 
Author Helling, C. et al; Bernabeu, J.; Lacasta, C.; Solaz, C. doi  openurl
  Title Strip sensor performance in prototype modules built for ATLAS ITk Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 978 Issue Pages 164402 - 6pp  
  Keywords Silicon strip sensors; Strip module; Inter-strip isolation; Readout noise  
  Abstract ATLAS experiment is preparing an upgrade of its detector for High-Luminosity LHC (HL-LHC) operation. The upgrade involves installation of the new all-silicon Inner Tracker (ITk). In the context of the ITk preparations, more than 80 strip modules were built with prototype barrel sensors. They were tested with electrical readout on a per-channel basis. In general, an excellent performance was observed, consistent with previous ASIC-level and sensor-level tests. However, the lessons learned included two phenomena important for the future phases of the project. First was the need to store and test the modules in a dry environment due to humidity sensitivity of the sensors. The second was an observation of high noise regions for 2 modules. The high noise regions were tested further in several ways, including monitoring the performance as a function of time and bias voltage. Additionally, direct sensor-level tests were performed on the affected channels. The inter-strip resistance and bias resistance tests showed low values, indicating a temporary loss of the inter-strip isolation. A subsequent recovery of the noise performance was observed. We present the test details, an analysis of how the inter-strip isolation affects the module noise, and the relationship with sensor-level quality control tests.  
  Address [Helling, C.; Affolder, A. A.; Fadeyev, V.; Galloway, Z.; Gignac, M.; Gunnell, J.; Martinez-Mckinney, F.; Kang, N.; Yarwick, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA, Email: fadeyev@ucsc.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000560076700015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4505  
Permanent link to this record
 

 
Author Saha, S.; Arici, T.; Gerl, J.; Gorska, M.; Pietralla, N.; Davinson, T.; Morales, A.I.; Podolyak, Z. doi  openurl
  Title On the 6-detection efficiency of a combined Si and plastic stack detector for DESPEC Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 975 Issue Pages 164196 - 8pp  
  Keywords  
  Abstract A Geant4 simulation has been carried out in order to determine the beta-detection efficiency of a rare isotope beam implantation setup, for decay spectroscopy experiments, comprising a number of Double Sided Silicon Strip Detectors (DSSSDs) and two plastic scintillation detectors placed upstream and downstream. The absolute efficiency for the emitted beta-particle detection from radioactive fragments implanted in the DSSSDs using fast-timing plastic-scintillator detector, is calculated. The detection efficiency of the setup has been studied with two different distances between the Si layers and plastics. The requirement for the thickness of the Si detector layers and its implication on the beta-detection efficiency has been investigated for 1 mm and 300 µm thickness of Si layers. The combined efficiency of DSSSD and plastic detectors were also simulated for two different thicknesses of the DSSSD.  
  Address [Saha, S.; Arici, T.; Gerl, J.; Gorska, M.] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany, Email: Sudipta_Saha@uml.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000539967000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4427  
Permanent link to this record
 

 
Author n_TOF Collaboration (Bacak, M. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 969 Issue Pages 163981 - 10pp  
  Keywords Fission detector; U-233; n_TOF; Time-of-flight  
  Abstract In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the U-233(n, gamma) cross-section at the nTOF facility at CERN, where it was coupled to the nTOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.  
  Address [Bacak, M.; Gunsing, F.; Vlachoudis, V.; Aberle, O.; Calviani, M.; Cardella, R.; Cerutti, F.; Chiaveri, E.; Ferrari, A.; Gilardoni, S.; Kadi, Y.; Macina, D.; Masi, A.; Mingrone, F.; Rubbia, C.; Sabate-Gilarte, M.; Zugec, P.] CERN, European Org Nucl Res, Geneva, Switzerland, Email: michael.bacak@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000536792400015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4413  
Permanent link to this record
 

 
Author Schreeck, H.; Paschen, B.; Wieduwilt, P.; Ahlburg, P.; Andricek, L.; Dingfelder, J.; Frey, A.; Lutticke, F.; Marinas, C.; Richter, R.; Schwenker, B. doi  openurl
  Title Effects of gamma irradiation on DEPFET pixel sensors for the Belle II experiment Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 959 Issue Pages 163522 - 9pp  
  Keywords DEPFET; Radiation damage; Particle tracking detectors; Belle II  
  Abstract For the Belle II experiment at KEK (Tsukuba, Japan) the KEKB accelerator was upgraded to deliver a 40 times larger instantaneous luminosity than before, which requires an increased radiation hardness of the detector components. As the innermost part of the Belle II detector, the pixel detector (PXD), based on DEPFET (DEpleted P-channel Field Effect Transistor) technology, is most exposed to radiation from the accelerator. An irradiation campaign was performed to verify that the PXD can cope with the expected amount of radiation. We present the results of this measurement campaign in which an X-ray machine was used to irradiate a single PXD half-ladder to a total dose of 266 kGy. The half-ladder is from the same batch as the half-ladders used for Belle II. According to simulations, the total accumulated dose corresponds to 7-10 years of Belle II operation. While individual components have been irradiated before, this campaign is the first full system irradiation. We discuss the effects on the DEPFET sensors, as well as the performance of the front-end electronics. In addition, we present efficiency studies of the half-ladder from beam tests performed before and after the irradiation.  
  Address [Schreeck, Harrison; Wieduwilt, Philipp; Frey, Ariane; Schwenker, Benjamin] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: harrison.schreeck@phys.uni-goettingen.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518368800016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4316  
Permanent link to this record
 

 
Author Ljungvall, J.; Perez-Vidal, R.M.; Lopez-Martens, A.; Michelagnoli, C.; Clement, E.; Dudouet, J.; Gadea, A.; Hess, H.; Korichi, A.; Labiche, M.; Lalovic, N.; Li, H.J.; Recchia, F. doi  openurl
  Title Performance of the Advanced GAmma Tracking Array at GANIL Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 955 Issue Pages 163297 - 13pp  
  Keywords AGATA spectrometer; GANIL facility; gamma-ray tracking; Nuclear structure; HPGe detectors  
  Abstract The performance of the Advanced GAmma Tracking Array (AGATA) at GANIL is discussed, on the basis of the analysis of source and in-beam data taken with up to 30 segmented crystals. Data processing is described in detail. The performance of individual detectors are shown. The efficiency of the individual detectors as well as the efficiency after gamma-ray tracking are discussed. Recent developments of gamma-ray tracking are also presented. The experimentally achieved peak-to-total is compared with simulations showing the impact of back-scattered gamma rays on the peak-to-total in a gamma-ray tracking array. An estimate of the achieved position resolution using the Doppler broadening of in-beam data is also given. Angular correlations from source measurements are shown together with different methods to take into account the effects of gamma-ray tracking on the normalization of the angular correlations.  
  Address [Ljungvall, J.; Lopez-Martens, A.; Dudouet, J.; Korichi, A.] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France, Email: joa.ljungvall@csnsm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000508940400029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4276  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva