|   | 
Details
   web
Records
Author Albiol, F.; Corbi, A.; Albiol, A.
Title Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction Type Journal Article
Year 2016 Publication IEEE Transactions on Medical Imaging Abbreviated Journal IEEE Trans. Med. Imaging
Volume 35 Issue 8 Pages 1952-1961
Keywords 3D reconstruction; camera system; geometric calibration; visible fiducials; X-ray imaging
Abstract We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT.
Address [Albiol, Francisco; Corbi, Alberto] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: kiko@ific.uv.es;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-0062 ISBN Medium
Area Expedition Conference
Notes WOS:000381436000016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2781
Permanent link to this record
 

 
Author Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.
Title On the Magnetic Field of a Finite Solenoid Type Journal Article
Year 2023 Publication IEEE Transactions on Magnetics Abbreviated Journal IEEE Trans. Magn.
Volume 59 Issue 4 Pages 7000106 - 6pp
Keywords Solenoids; Magnetic fields; Integral equations; Magnetostatics; Magnetostatic waves; Particle beams; NASA; Elliptic integrals; finite solenoid; magnetostatics
Abstract The magnetostatic field of a finite solenoid with infinitely thin walls carrying a dc current oriented in the azimuthal direction is calculated everywhere in space in terms of complete elliptic integrals by direct integration of the Biot-Savart law. The solution is particularized near the solenoid axis and in the midplane perpendicular to the axis obtaining expressions that agree with some typical approximations that are made in introductory courses of electromagnetism or in the technical literature. The range of validity of these approximations has been studied comparing them with the obtained general expression.
Address [Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.] Univ Valencia, Inst Corpuscular Phys IFIC, CSIC, Paterna 46980, Spain, Email: Pablo.Martin@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9464 ISBN Medium
Area Expedition Conference
Notes WOS:001006992700005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5552
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A.
Title Densitometric Radiographic Imaging With Contour Sensors Type Journal Article
Year 2019 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 7 Issue Pages 18902-18914
Keywords Conventional X-ray imaging; contour data; densitometric images; dynamic range; depth information
Abstract We present the technical/physical foundations of a new imaging technique that combines ordinary radiographic information (generated by conventional X-ray settings) with the patient's volume to derive densitometric images. Traditionally, these images provide quantitative information about tissues densities. In our approach, they graphically enhance either soft or bony regions. After measuring the patient's volume with contour recognition devices, the physical traversed lengths within it (as the Roentgen beam intersects the patient) are calculated and pixel-wise associated with the original radiograph (X). In order to derive this map of lengths (L), the camera equations of the X-ray system and the contour sensor are determined. The patient's surface is also translated to the point-of-view of the X-ray beam and all its entrance/exit points are sought with the help of ray-casting methods. The derived L is applied to X as a physical operation (subtraction), obtaining soft tissue-(D-S) or bone-enhanced (D'(B)) figures. In the D-S type, the contained graphical information can be linearly mapped to the average electronic density (traversed by the X-ray beam). This feature represents an interesting proof-of-concept of associating density data to radiographs, but most important, their intensity histogram is objectively compressed, i.e., the dynamic range is more shrunk (compared against the corresponding X). This leads to other advantages: improvement in the visibility of border/edge areas (high gradient), extended manual window level/width manipulations during screening, and immediate correction of underexposed X instances. In the D-B' type, high-density elements are highlighted and easier to discern. All these results can be achieved with low-energy beam exposures, saving costs and dose. Future work will deepen this clinical side of our research. In contrast with other image-based modifiers, the proposed method is grounded on the measurement of a physical entity: the span of the X-ray beam within a body while undertaking a radiographic examination.
Address [Albiol, Francisco; Corbi, Alberto] CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: kiko@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000459591800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3920
Permanent link to this record
 

 
Author Koolen, B.B.; Vidal-Sicart, S.; Benlloch, J.M.; Olmos, R.A.V.
Title Evaluating heterogeneity of primary tumor 18 F-FDG uptake in breast cancer with a dedicated breast PET ( MAMMI): a feasibility study based on correlation with PET/CT Type Journal Article
Year 2014 Publication Nuclear Medicine Communications Abbreviated Journal Nucl. Med. Commun.
Volume 35 Issue 5 Pages 446-452
Keywords breast cancer; F-18-FDG; heterogeneity; MAMMI; PET
Abstract PurposeThe aim of the study was to evaluate the heterogeneity of primary tumor F-18-fluorodeoxyglucose (F-18-FDG) uptake in breast cancer patients using a dedicated breast PET.Patients and methodsA positron emission tomography/computed tomography (PET/CT) of the thorax was performed 60 min after administration of 180-240 MBq of F-18-FDG in patients with breast cancer. Subsequently, 110 min after injection, a scan was taken with a dedicated high-resolution breast PET [MAMmography with Molecular Imaging (MAMMI)]. Both procedures were performed with the patients in the prone position. Four-point scores were used to compare the intensity (0: none; 1: mild; 2: moderate; 3: high) and heterogeneity (0: none; 1: mild; 2: moderate; 3: high) of F-18-FDG uptake between PET/CT and MAMMI images.ResultsThirty-five patients in whom the primary tumor was visualized on both scans were included in this analysis. The mean primary tumor size was 35.1 mm (range 10-108 mm). The mean intensity score was similar on both devices (2.4 for PET/CT and 2.3 for MAMMI; P=0.439), but the mean heterogeneity score on MAMMI images was significantly higher (PET/CT 1.9 vs. MAMMI 2.3; P=0.005). MAMMI showed a higher heterogeneity score in 11 (31%) of 35 patients, especially in tumors with moderate or high intensity. Significantly higher heterogeneity scores on both PET/CT and MAMMI were seen in large tumors (P=0.005 and 0.014, respectively) and in tumors with high intensity scores (P=0.012 and P<0.001, respectively).ConclusionHeterogeneous tumor F-18-FDG uptake in breast cancer is frequently observed, particularly in large tumors with intense F-18-FDG uptake. It is more often seen on MAMMI PET than on conventional PET/CT. Although the observed heterogeneity should be proven histopathologically, this finding offers a rationale for F-18-FDG-guided biopsies.
Address [Koolen, Bas B.; Vidal-Sicart, Sergi; Olmos, Renato A. Valdes] Antoni van Leeuwenhoek Hosp, Netherlands Canc Inst, Dept Nucl Med, NL-1066 CX Amsterdam, Netherlands, Email: b.koolen@nki.nl
Corporate Author Thesis
Publisher Lippincott Williams & Wilkins Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-3636 ISBN Medium
Area Expedition Conference
Notes WOS:000334103800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1763
Permanent link to this record
 

 
Author Ros, A.; Lerche, C.W.; Sebastia, A.; Sanchez, F.; Benlloch, J.M.
Title Retroreflector arrays for better light collection efficiency of gamma-ray imaging detectors with continuous scintillation crystals without DOI misestimation Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P04009 - 14pp
Keywords Gamma detectors (scintillators, CZT, HPG, HgI etc); Interaction of radiation with matter; Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Detector design and construction technologies and materials
Abstract A method to improve light collection efficiency of gamma-ray imaging detectors by using retroreflector arrays has been tested, simulations of the behaviour of the scintillation light illuminating the retroreflector surface have been made. Measurements including retroreflector arrays in the setup have also been taken. For the measurements, positron emission tomography (PET) detectors with continuous scintillation crystals have been used. Each detector module consists of a continuous LSO-scintillator of dimensions 49x49x10 mm(3) and a H8500 position-sensitive photo-multiplier (PSPMT) from Hamamatsu. By using a continuous scintillation crystal, the scintillation light distribution has not been destroyed and the energy, the centroids along the x- and y-direction and the depth of interaction (DOI) can be estimated. Simulations have also been run taking into account the use of continuous scintillation crystals. Due to the geometry of the continuous scintillation crystals in comparison with pixelated crystals, a good light collection efficiency is necessary to correctly reconstruct the impact point of the gamma-ray. The aim of this study is to investigate whether micro-machine retro-reflectors improve light yield without misestimation of the impact point. The results shows an improvement on the energy and centroid resolutions without worsening the depth of interaction resolution. Therefore it can be concluded that using retroreflector arrays at the entrance side of the scintillation crystal improves light collection efficiency without worsening the impact point estimation.
Address [Ros, A.] Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: anrogar2@i3m.upv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000336123800049 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1798
Permanent link to this record