|   | 
Details
   web
Records
Author Caron, S.; Eckner, C.; Hendriks, L.; Johannesson, G.; Ruiz de Austri, R.; Zaharijas, G.
Title Mind the gap: the discrepancy between simulation and reality drives interpretations of the Galactic Center Excess Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 013 - 56pp
Keywords dark matter simulations; gamma ray experiments; Machine learning; millisecond pulsars
Abstract The Galactic Center Excess (GCE) in GeV gamma rays has been debated for over a decade, with the possibility that it might be due to dark matter annihilation or undetected point sources such as millisecond pulsars (MSPs). This study investigates how the gamma-ray emission model (-yEM) used in Galactic center analyses affects the interpretation of the GCE's nature. To address this issue, we construct an ultra-fast and powerful inference pipeline based on convolutional Deep Ensemble Networks. We explore the two main competing hypotheses for the GCE using a set of-yEMs with increasing parametric freedom. We calculate the fractional contribution (fsrc) of a dim population of MSPs to the total luminosity of the GCE and analyze its dependence on the complexity of the ryEM. For the simplest ryEM, we obtain fsrc = 0.10 f 0.07, while the most complex model yields fsrc = 0.79 f 0.24. In conclusion, we find that the statement about the nature of the GCE (dark matter or not) strongly depends on the assumed ryEM. The quoted results for fsrc do not account for the additional uncertainty arising from the fact that the observed gamma-ray sky is out-of-distribution concerning the investigated ryEM iterations. We quantify the reality gap between our ryEMs using deep-learning-based One-Class Deep Support Vector Data Description networks, revealing that all employed ryEMs have gaps to reality. Our study casts doubt on the validity of previous conclusions regarding the GCE and dark matter, and underscores the urgent need to account for the reality gap and consider previously overlooked “out of domain” uncertainties in future interpretations.
Address [Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Theoret High Energy Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands, Email: scaron@nikhef.nl;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025516000009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5576
Permanent link to this record
 

 
Author Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M.
Title Non-unitary three-neutrino mixing in the early Universe Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 046 - 18pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory
Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000959757500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5516
Permanent link to this record
 

 
Author Amerio, A.; Cuoco, A.; Fornengo, N.
Title Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 029 - 39pp
Keywords gamma ray theory; Machine learning
Abstract We reconstruct the extra-galactic gamma-ray source-count distribution, or dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifically, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are built by varying parameters of underlying source-counts models and incorporate the FermiLAT instrumental response functions. The trained neural network is then applied to the Fermi-LAT data, from which we estimate the source count distribution down to flux levels a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of data collected in the (1, 10) GeV energy range. The results we obtain show a source count distribution which, in the resolved regime, is in excellent agreement with the one derived from cataloged sources, and then extends as dN/dS " S-2 in the unresolved regime, down to fluxes of 5 center dot 10-12 cm-2 s-1. The neural network architecture and the devised methodology have the flexibility to enable future analyses to study the energy dependence of the source-count distribution.
Address [Amerio, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: aurelio.amerio@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001097055700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5785
Permanent link to this record
 

 
Author Delhom, A.; Olmo, G.J.; Singh, P.
Title A diffeomorphism invariant family of metric-affine actions for loop cosmologies Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 059 - 21pp
Keywords quantum cosmology; modified gravity; cosmic singularity
Abstract In loop quantum cosmology (LQC) the big bang singularity is generically resolved by a big bounce. This feature holds even when modified quantization prescriptions of the Hamiltonian constraint are used such as in mLQC-I and mLQC-II. While the later describes an effective description qualitatively similar to that of standard LQC, the former describes an asymmetric evolution with an emergent Planckian de-Sitter pre-bounce phase even in the absence of a potential. We consider the potential relation of these canonically quantized non-singular models with effective actions based on a geometric description. We find a 3-parameter family of metric-affine f (R) theories which accurately approximate the effective dynamics of LQC and mLQC-II in all regimes and mLQC-I in the post-bounce phase. Two of the parameters are fixed by enforcing equivalence at the bounce, and the background evolution of the relevant observables can be fitted with only one free parameter. It is seen that the non-perturbative effects of these loop cosmologies are universally encoded by a logarithmic correction that only depends on the bounce curvature of the model. In addition, we find that the best fit value of the free parameter can be very approximately written in terms of fundamental parameters of the underlying quantum description for the three models. The values of the best fits can be written in terms of the bounce density in a simple manner, and the values for each model are related to one another by a proportionality relation involving only the Barbero-Immirzi parameter.
Address [Delhom, Adria; Singh, Parampreet] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: adria.delhom@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025410500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5583
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Saina, A.; Zornoza, J.D.; Zuñiga, J.
Title Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 004 - 19pp
Keywords gravitational waves; sources; neutrino astronomy; neutron stars
Abstract Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by v μcharged -current interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within +/- 500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,v emitted as neutrinos of all flavours and on the ratio fv = Etot,v/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,v < 4.0 x 1053 erg and fv < 0.15 (respectively, Etot,v < 3.2 x 1053 erg and fv < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been tested.
Address [Albert, A.; Drouhin, D.; Martinez-Mora, A.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000989593000009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5545
Permanent link to this record
 

 
Author Capozzi, F.; Ferreira, R.Z.; Lopez-Honorez, L.; Mena, O.
Title CMB and Lyman-alpha constraints on dark matter decays to photons Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 060 - 23pp
Keywords reionization; axions; cosmological parameters from CMBR; dark matter theory
Abstract Dark matter energy injection in the early universe modifies both the ionization history and the temperature of the intergalactic medium. In this work, we improve the CMB bounds on sub-keV dark matter and extend previous bounds from Lyman-& alpha; observations to the same mass range, resulting in new and competitive constraints on axion-like particles (ALPs) decaying into two photons. The limits depend on the underlying reionization history, here accounted self-consistently by our modified version of the publicly available DarkHistory and CLASS codes. Future measurements such as the ones from the CMB-S4 experiment may play a crucial, leading role in the search for this type of light dark matter candidates.
Address [Capozzi, Francesco] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy, Email: francesco.capozzi@univaq.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025410500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5584
Permanent link to this record
 

 
Author Zhai, Y.J.; Giare, W.; van de Bruck, C.; Di Valentino, E.; Mena, O.; Nunes, R.C.
Title A consistent view of interacting dark energy from multiple CMB probes Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 032 - 16pp
Keywords cosmological parameters from CMBR; dark energy theory
Abstract We analyze a cosmological model featuring an interaction between dark energy and dark matter in light of the measurements of the Cosmic Microwave Background released by three independent experiments: the most recent data by the Planck satellite and the Atacama Cosmology Telescope, and WMAP (9-year data). We show that different combinations of the datasets provide similar results, always favoring an interacting dark sector with a 95% C.L. significance in the majority of the cases. Remarkably, such a preference remains consistent when cross-checked through independent probes, while always yielding a value of the expansion rate H0 consistent with the local distance ladder measurements. We investigate the source of this preference by scrutinizing the angular power spectra of temperature and polarization anisotropies as measured by different experiments.
Address [Zhai, Yuejia; Giare, William; van de Bruck, Carsten; Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: yzhai13@sheffield.ac.uk;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001066525900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5673
Permanent link to this record
 

 
Author Babak, S.; Caprini, C.; Figueroa, D.G.; Karnesis, N.; Marcoccia, P.; Nardini, G.; Pieroni, M.; Ricciardone, A.; Sesana, A.; Torrado, J.
Title Stochastic gravitational wave background from stellar origin binary black holes in LISA Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 034 - 37pp
Keywords
Abstract We use the latest constraints on the population of stellar origin binary black holes (SOBBH) from LIGO/Virgo/KAGRA (LVK) observations, to estimate the stochastic gravitational wave background (SGWB) they generate in the frequency band of LISA. In order to account for the faint and distant binaries, which contribute the most to the SGWB, we extend the merger rate at high redshift assuming that it tracks the star formation rate. We adopt different methods to compute the SGWB signal: we perform an analytical evaluation, we use Monte Carlo sums over the SOBBH population realisations, and we account for the role of the detector by simulating LISA data and iteratively removing the resolvable signals until only the confusion noise is left. The last method allows the extraction of both the expected SGWB and the number of resolvable SOBBHs. Since the latter are few for signal-to-noise ratio thresholds larger than five, we confirm that the spectral shape of the SGWB in the LISA band agrees with the analytical prediction of a single power law. We infer the probability distribution of the SGWB amplitude from the LVK GWTC-3 posterior of the binary population model: at the reference frequency of 0.003 Hz it has an interquartile range of h2ΩGW(f = 3 × 10-3 Hz) ∈ [5.65, 11.5] × 10-13, in agreement with most previous estimates. We then perform a MC analysis to assess LISA's capability to detect and characterise this signal. Accounting for both the instrumental noise and the galactic binaries foreground, with four years of data, LISA will be able to detect the SOBBH SGWB with percent accuracy, narrowing down the uncertainty on the amplitude by one order of magnitude with respect to the range of possible amplitudes inferred from the population model. A measurement of this signal by LISA will help to break the degeneracy among some of the population parameters, and provide interesting constraints, in particular on the redshift evolution of the SOBBH merger rate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6081
Permanent link to this record
 

 
Author Santos, A.C.L.; Muniz, C.R.; Maluf, R.V.
Title Yang-Mills Casimir wormholes in D=2+1 Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 022 - 24pp
Keywords Wormholes; Exact solutions; black holes and black hole thermodynamics in GR and beyond; gravity
Abstract This work presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressures related to the quantum vacuum fluctuations in Yang-Mills (Y-M) theory. We begin by analyzing the noninteracting Y-M Casimir wormholes, initially considering an arbitrary state parameter omega and determine a simple constant wormhole shape function. Next, we introduce a new methodology for deforming the state parameter to find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of omega = 2. Then, we investigate the wormhole curvature properties, energy conditions, and stability. Furthermore, we discover a novel family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and traversable wormhole solutions. Finally, we examine the energy conditions and stability of solutions in the interacting scenario and compare to the noninteracting case.
Address [Santos, Alana C. L.; Maluf, Roberto V.] Univ Fed Ceara UFC, Departamento Fis, Campus Pici,6030, BR-60455760 Fortaleza, Ceara, Brazil, Email: alanasantos@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001196198800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6031
Permanent link to this record
 

 
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J.
Title Birth of baby universes from gravitational collapse in a modified-gravity scenario Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 028 - 19pp
Keywords modified gravity; Wormholes
Abstract We consider equilibrium models of spherical boson stars in Palatini f (R) = R + CR2 gravity and study their collapse when perturbed. The Einstein-Klein-Gordon system is solved using a recently established correspondence in an Einstein frame representation. We find that, in that frame, the endpoint is a nonrotating black hole surrounded by a quasi -stationary cloud of scalar field. However, the dynamics in the f (R) frame is dramatically different. The innermost region of the collapsing object exhibits the formation of a finite -size, exponentially-expanding baby universe connected with the outer (parent) universe via a minimal area surface (a throat or umbilical cord). Our simulations indicate that this surface is at all times hidden inside a horizon, causally disconnecting the baby universe from observers above the horizon. The implications of our findings in other areas of gravitational physics are also discussed.
Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: andreu.maso@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025474200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5577
Permanent link to this record