toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Sanjuan, R.; Nebot, M.; Chirico, N.; Mansky, L.M.; Belshaw, R. doi  openurl
  Title Viral Mutation Rates Type Journal Article
  Year 2010 Publication Journal of Virology Abbreviated Journal J. Virol.  
  Volume 84 Issue 19 Pages 9733-9748  
  Keywords  
  Abstract Accurate estimates of virus mutation rates are important to understand the evolution of the viruses and to combat them. However, methods of estimation are varied and often complex. Here, we critically review over 40 original studies and establish criteria to facilitate comparative analyses. The mutation rates of 23 viruses are presented as substitutions per nucleotide per cell infection (s/n/c) and corrected for selection bias where necessary, using a new statistical method. The resulting rates range from 10(-8) to 10(-6) s/n/c for DNA viruses and from 10(-6) to 10(-4) s/n/c for RNA viruses. Similar to what has been shown previously for DNA viruses, there appears to be a negative correlation between mutation rate and genome size among RNA viruses, but this result requires further experimental testing. Contrary to some suggestions, the mutation rate of retroviruses is not lower than that of other RNA viruses. We also show that nucleotide substitutions are on average four times more common than insertions/deletions (indels). Finally, we provide estimates of the mutation rate per nucleotide per strand copying, which tends to be lower than that per cell infection because some viruses undergo several rounds of copying per cell, particularly double-stranded DNA viruses. A regularly updated virus mutation rate data set will be available at www.uv.es/rsanjuan/virmut.  
  Address [Sanjuan, Rafael] Univ Valencia, Inst Cavanilles Biodiversitat & Biol Evolutiva, Dept Genet, Valencia 46980, Spain, Email: rafael.sanjuan@uv.es  
  Corporate Author Thesis  
  Publisher Amer Soc Microbiology Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-538x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282641800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 371  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. doi  openurl
  Title A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider Type Journal Article
  Year 2012 Publication Science Abbreviated Journal Science  
  Volume 338 Issue 6114 Pages 1576-1582  
  Keywords  
  Abstract Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.  
  Address  
  Corporate Author Thesis  
  Publisher Amer Assoc Advancement Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312533100043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1393  
Permanent link to this record
 

 
Author Cases, R.; Ros, E.; Zuñiga, J. doi  openurl
  Title Measuring radon concentration in air using a diffusion cloud chamber Type Journal Article
  Year 2011 Publication American Journal of Physics Abbreviated Journal Am. J. Phys.  
  Volume 79 Issue 9 Pages 903-908  
  Keywords cloud chambers; diffusion; radiation effects; radon; student experiments  
  Abstract Radon concentration in air is a major concern in lung cancer studies. A traditional technique used to measure radon abundance is the charcoal canister method. We propose a novel technique using a diffusion cloud chamber. This technique is simpler and can easily be used for physics demonstrations for high school and university students.  
  Address [Cases, R; Ros, E; Zuniga, J] Univ Valencia, CSIC, IFIC, Valencia 22085, Spain, Email: ramon.cases@uv.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physics Teachers Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294064300003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 724  
Permanent link to this record
 

 
Author Granero, D.; Candela-Juan, C.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Jacob, D.; Mourtada, F. doi  openurl
  Title Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 43 Issue 5 Pages 2087 - 4pp  
  Keywords Leipzig applicators; Valencia applicators; skin brachytherapy; Monte Carlo; dosimetry  
  Abstract Purpose: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. Methods: GEANT4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with and without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. Results: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. Conclusions: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement. (C) 2016 American Association of Physicists in Medicine.  
  Address [Granero, D.] Hosp Gen Univ, Dept Radiat Phys, ERESA, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378924200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2753  
Permanent link to this record
 

 
Author Candela-Juan, C.; Niatsetski, Y.; van der Laarse, R.; Granero, D.; Ballester, F.; Perez-Calatayud, J.; Vijande, J. doi  openurl
  Title Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 43 Issue 4 Pages 1639-1648  
  Keywords skin applicator; Valencia applicator; HDR brachytherapy; dosimetry; Monte Carlo  
  Abstract Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a Ir-192 source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a 192Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth-dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.  
  Address [Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ & Polytech Hosp, Dept Radiat Oncol, Valencia 46026, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373711000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2620  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva