toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P. doi  openurl
  Title Monte Carlo calculation of beam quality correction factors for PTW cylindrical ionization chambers in photon beams Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 20 Pages 205005 - 11pp  
  Keywords TRS 398; Monte Carlo; dosimetry; ionization chambers; MV photon beams  
  Abstract The beam quality correction factork(Q)for megavoltage photon beams has been calculated for eight PTW (Freiburg, Germany) ionization chambers (Farmer chambers PTW30010, PTW30011, PTW30012, and PTW30013, Semiflex 3D chambers PTW31021, PTW31010, and PTW31013, and the PinPoint 3D chamber PTW31016). Simulations performed on the widely used NE-2571 ionization chamber have been used to benchmark the results. The Monte Carlo code PENELOPE/penEasy was used to calculate the absorbed dose to a point in water and the absorbed dose to the active air volume of the chambers for photon beams in the range 4 to 24 MV. Of the nine ionization chambers analysed, only five are included in the current version of the International Code of Practice for dosimetry based on standards of absorbed dose to water (IAEA TRS 398). The values reported in this work agree with those in the literature within the uncertainty estimates and are to be included in the average values of the data obtained by different working groups for the forthcoming update of TRS 398.  
  Address [Gimenez-Alventosa, Vicent] Univ Politecn Valencia, CSIC, Ctr Mixto, Inst Instrumentac Imagen Mol I3M, Valencia, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576070000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4556  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Oliver, S. doi  openurl
  Title PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE Type Journal Article
  Year 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 267 Issue Pages 108065 - 12pp  
  Keywords Radiation transport; Monte Carlo simulation; Electron-photon showers; Parallel computing; MPI; Medical physics  
  Abstract Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kinds of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, standalone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming language and takes advantage of modern object-oriented technologies. In addition, PenRed offers the capability to read and process DICOM images as well as to construct and simulate image-based voxelized geometries, so as to facilitate its usage in medical applications. Our framework has been successfully verified against the original PENELOPE Fortran code. Furthermore, the implemented parallelism has been tested showing a significant improvement in the simulation time without any loss in precision of results. Program summary Program title: PenRed: Parallel Engine for Radiation Energy Deposition. CPC Library link to program files: https://doi .org /10 .17632/rkw6tvtngy.1 Licensing provision: GNU Affero General Public License (AGPL). Programming language: C++ standard 2011. Nature of problem: Monte Carlo simulations usually require a huge amount of computation time to achieve low statistical uncertainties. In addition, many applications necessitate particular characteristics or the extraction of specific quantities from the simulation. However, most available Monte Carlo codes do not provide an efficient parallel and truly modular structure which allows users to easily customise their code to suit their needs without an in-depth knowledge of the code system. Solution method: PenRed is a fully parallel, modular and customizable framework for Monte Carlo simulations of the passage of radiation through matter. It is based on the PENELOPE [1] code system, from which inherits its unique physics models and tracking algorithms for charged particles. PenRed has been coded in C++ following an object-oriented programming paradigm restricted to the C++11 standard. Our engine implements parallelism via a double approach: on the one hand, by using standard C++ threads for shared memory, improving the access and usage of the memory, and, on the other hand, via the MPI standard for distributed memory infrastructures. Notice that both kinds of parallelism can be combined together in the same simulation. Moreover, both threads and MPI processes, can be balanced using the builtin load balance system (RUPER-LB [30]) to maximise the performance on heterogeneous infrastructures. In addition, PenRed provides a modular structure with methods designed to easily extend its functionality. Thus, users can create their own independent modules to adapt our engine to their needs without changing the original modules. Furthermore, user extensions will take advantage of the builtin parallelism without any extra effort or knowledge of parallel programming. Additional comments including restrictions and unusual features: PenRed has been compiled in linux systems withg++ of GCC versions 4.8.5, 7.3.1, 8.3.1 and 9; clang version 3.4.2 and intel C++ compiler (icc) version 19.0.5.281. Since it is a C++11-standard compliant code, PenRed should be able to compile with any compiler with C++11 support. In addition, if the code is compiled without MPI support, it does not require any non standard library. To enable MPI capabilities, the user needs to install whatever available MPI implementation, such as openMPI [24] or mpich [25], which can be found in the repositories of any linux distribution. Finally, to provide DICOM processing support, PenRed can be optionally compiled using the dicom toolkit (dcmtk) [32] library. Thus, PenRed has only two optional dependencies, an MPI implementation and the dcmtk library.  
  Address [Gimenez-Alventosa, V] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Ctr Mixto CSIC, Cami Vera S-N, Valencia 46022, Spain, Email: vicent.gimenez@i3m.upv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000678508900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4907  
Permanent link to this record
 

 
Author Fernandes, L.M.P.; Freitas, E.D.C.; Ball, M.; Gomez-Cadenas, J.J.; Monteiro, C.M.B.; Yahlali, N.; Nygren, D.; dos Santos, J.M.F. url  doi
openurl 
  Title Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter Type Journal Article
  Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 5 Issue Pages P09006 - 15pp  
  Keywords Interaction of radiation with matter; Gaseous detectors; Photon detectors for UV, visible and IR photons (vacuum) (photomultipliers, HPDs, others)  
  Abstract NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC. The detector requires excellent energy resolution, which can be achieved in a Xe TPC with electroluminescence readout. Hamamatsu R8520-06SEL photomultipliers are good candidates for the scintillation readout. The performance of this photomultiplier, used as VUV photosensor in a gas proportional scintillation counter, was investigated. Initial results for the detection of primary and secondary scintillation produced as a result of the interaction of 5.9 keV X-rays in gaseous xenon, at room temperature and at pressures up to 3 bar, are presented. An energy resolution of 8.0% was obtained for secondary scintillation produced by 5.9 keV X-rays. No significant variation of the primary scintillation was observed for different pressures (1, 2 and 3 bar) and for electric fields up to 0.8 V cm(-1) torr(-1) in the drift region, demonstrating negligible recombination luminescence. A primary scintillation yield of 81 +/- 7 photons was obtained for 5.9 keV X-rays, corresponding to a mean energy of 72 +/- 6 eV to produce a primary scintillation photon in xenon.  
  Address [Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, Instrumentat Ctr, P-3004516 Coimbra, Portugal, Email: pancho@gian.fis.uc.pt  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283796100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 255  
Permanent link to this record
 

 
Author ATLAS Collaboration (Abat, E. et al); Bernabeu Verdu, J.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Garcia, C.; Gonzalez-Sevilla, S.; Higon-Rodriguez, E.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V.A.; Ruiz, A.; Solans, C.; Valero, A.; Valls Ferrer, J.A. url  doi
openurl 
  Title A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test Type Journal Article
  Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 6 Issue Pages P06001 - 35pp  
  Keywords Calorimeter methods; Pattern recognition, cluster finding, calibration and fitting methods; Calorimeters; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.  
  Address [Wheeler, S] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada[Bernabeu, J; Castillo, MV; Costa, MJ; Escobar, C; Ferrer, A; Garcia, C; Gonzalez-Sevilla, S; Higon, E; Lacasta, C; Garcia, SMI; Mitsou, VA; Ruiz, A; Solans, C; Valero, A; Valls, JA] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain, Email: kjg@particle.kth.se  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294492600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 744  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A. url  doi
openurl 
  Title Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)=7 TeV using 35 pb(-1) of ATLAS data Type Journal Article
  Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 706 Issue 2-3 Pages 150-167  
  Keywords Photon; ATLAS; LHC; Standard Model  
  Abstract A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges vertical bar eta vertical bar < 1.37 and 1.52 <= vertical bar eta vertical bar < 2.37 in the transverse energy range 45 <= E(T) < 400 GeV. The results are based on an integrated luminosity of 35 pb(-1), collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.  
  Address [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298338000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 851  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva