toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Giusarma, E.; de Putter, R.; Ho, S.; Mena, O. url  doi
openurl 
  Title Constraints on neutrino masses from Planck and Galaxy clustering data Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 6 Pages 063515 - 9pp  
  Keywords  
  Abstract We present here bounds on neutrino masses from the combination of recent Planck cosmic microwave background (CMB) measurements and galaxy clustering information from the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey-III. We use the full shape of either the photometric angular clustering (Data Release 8) or the 3D spectroscopic clustering (Data Release 9) power spectrum in different cosmological scenarios. In the Lambda CDM scenario, spectroscopic galaxy clustering measurements improve significantly the existing neutrino mass bounds from Planck data. We find Sigma m(v) < 0.39 eV at 95% confidence level for the combination of the 3D power spectrum with Planck CMB data (wi lensing included) and Wilkinson Microwave Anisoptropy Probe 9-year polarization measurements. Therefore, robust neutrino mass constraints can be obtained without the addition of the prior on the Hubble constant from Hubble Space Telescope. In extended cosmological scenarios with a dark energy fluid or with nonflat geometries, galaxy clustering measurements are essential to pin down the neutrino mass bounds, providing in the majority of cases better results than those obtained from the associated measurement of the baryon acoustic oscillation scale only. In the presence of a freely varying (constant) dark energy equation of state, we find Sigma m(v) < 0.49 eV at 95% confidence level for the combination of the 3D power spectrum with Planck CMB data (with lensing included) and Wilkinson Microwave Anisoptropy Probe 9-year polarization measurements. This same data combination in nonflat geometries provides the neutrino mass bound Sigma m(v) < 0.35 eV at 95% confidence level.  
  Address [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324233900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1592  
Permanent link to this record
 

 
Author Calabrese, E.; de Putter, R.; Huterer, D.; Linder, E.V.; Melchiorri, A. url  doi
openurl 
  Title Future CMB constraints on early, cold, or stressed dark energy Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 2 Pages 023011 - 11pp  
  Keywords  
  Abstract We investigate future constraints on early dark energy (EDE) achievable by the Planck and CMBPol experiments, including cosmic microwave background (CMB) lensing. For the dark energy, we include the possibility of clustering through a sound speed c(s)(2) < 1 (cold dark energy) and anisotropic stresses parametrized with a viscosity parameter c(vis)(2). We discuss the degeneracies between cosmological parameters and EDE parameters. In particular we show that the presence of anisotropic stresses in EDE models can substantially undermine the determination of the EDE sound speed parameter c(s)(2). The constraints on EDE primordial energy density are however unaffected. We also calculate the future CMB constraints on neutrino masses and find that they are weakened by a factor of 2 when allowing for the presence of EDE, and highly biased if it is incorrectly ignored.  
  Address [Calabrese, Erminia; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286803300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 563  
Permanent link to this record
 

 
Author de Putter, R.; Wagner, C.; Mena, O.; Verde, L.; Percival, W.J. url  doi
openurl 
  Title Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 019 - 31pp  
  Keywords galaxy clustering; power spectrum; cosmological simulations; dark matter simulations  
  Abstract Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only similar to 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc(-1) at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc(-1). As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.  
  Address [de Putter, Roland; Wagner, Christian; Verde, Lica] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@berkeley.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303665000019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1016  
Permanent link to this record
 

 
Author Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Sterile neutrino models and nonminimal cosmologies Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 8 Pages 083522 - 9pp  
  Keywords  
  Abstract Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.  
  Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303118100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 984  
Permanent link to this record
 

 
Author de Putter, R.; Mena, O.; Giusarma, E.; Ho, S.; Cuesta, A.; Seo, H.J.; Ross, A.J.; White, M.; Bizyaev, D.; Brewington, H.; Kirkby, D.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.K.; Percival, W.J.; Ross, N.P.; Schneider, D.P.; Shelden, A.; Simmons, A.; Snedden, S. url  doi
openurl 
  Title New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies Type Journal Article
  Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 761 Issue 1 Pages 12 - 12pp  
  Keywords cosmological parameters; cosmology: observations; large-scale structure of universe  
  Abstract We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg(2), thus probing a volume of 3 h(-3) Gpc(3) and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses Sigma m nu < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call “CMASS,” with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small (similar to 1 sigma-1.5 sigma) bias in Omega(DM)h(2). For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e. g., Sigma m(nu) < 0.38 eV (95% CL) for WMAP+HST+CMASS (l(max) = 200). We also study the dependence of the neutrino bound on the multipole range (l(max) = 150 versus l(max) = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature Omega(K), while a second companion paper presents a measurement of the scale of baryon acoustic oscillations from the same data set. All three works are based on the catalog by Ross et al.  
  Address [de Putter, Roland] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311748800012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1262  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva