|   | 
Details
   web
Records
Author Serenelli, A.; Scott, P.; Villante, F.L.; Vincent, A.C.; Asplund, M.; Basu, S.; Grevesse, N.; Pena-Garay, C.
Title Implications of solar wind measurements for solar models and composition Type Journal Article
Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 463 Issue 1 Pages 2-9
Keywords neutrinos; Sun: abundances; Sun: helioseismology; Sun: interior
Abstract We critically examine recent claims of a high solar metallicity by von Steiger & Zurbuchen (2016, vSZ16) based onin situ measurements of the solar wind, rather than the standard spectroscopically inferred abundances (Asplund et al. 2009, hereafter AGSS09). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with spectroscopic abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted B-8 flux that is nearly twice its observed value, and Be-7 and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances are worse than AGSS09 despite a higher metallicity. We also present astrophysical and spectroscopic arguments showing the vSZ16 composition to be an implausible representation of the solar interior, identifying the first ionization potential effect in the outer solar atmosphere and wind as the likely culprit.
Address [Serenelli, Aldo] Inst Space Sci IEEC CSIC, E-08193 Barcelona, Spain, Email: aldos@ice.csic.es
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000386464900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2842
Permanent link to this record
 

 
Author Simpson, F.; Jimenez, R.; Pena-Garay, C.; Verde, L.
Title Dark energy from the motions of neutrinos Type Journal Article
Year 2018 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 20 Issue Pages 72-77
Keywords Neutrinos; Dark energy; Interactions in the dark sector
Abstract Ordinarily, a scalar field may only play the role of dark energy if it possesses a potential that is either extraordinarily flat or extremely fine-tuned. Here we demonstrate that these restrictions are lifted when the scalar field undergoes persistent energy exchange with another fluid. In this scenario, the field is prevented from reversing its direction of motion, and instead may come to rest while displaced from the local minimum of its potential. Therefore almost any scalar potential is capable of initiating a prolonged phase of cosmic acceleration. If the rate of energy transfer is modulated via a derivative coupling, the field undergoes a rapid process of freezing, after which the field's equation of state mimicks that of a cosmological constant. We present a physically motivated realisation in the form of a neutrino-majoron coupling, which avoids the dynamical instabilities associated with mass-varying neutrino models. Finally we discuss possible means by which this model could be experimentally verified.
Address [Simpson, Fergus; Jimenez, Raul; Verde, Licia] Univ Barcelona, UB IEEC, ICC, Marti i Franques 1, E-08028 Barcelona 08028, Spain, Email: feigus2@icc.ub.edu;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000433904300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3599
Permanent link to this record
 

 
Author Vinyoles, N.; Serenelli, A.M.; Villante, F.L.; Basu, S.; Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pena-Garay, C.; Song, N.Q.
Title A New Generation of Standard Solar Models Type Journal Article
Year 2017 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 835 Issue 2 Pages 202 - 16pp
Keywords neutrinos; Sun: abundances; Sun: Helioseismology; Sun: interior
Abstract We compute a new generation of standard solar models (SSMs) that includes recent updates on some important nuclear reaction rates and a more consistent treatment of the equation of state. Models also include a novel and flexible treatment of opacity uncertainties based on opacity kernels, required in. light of recent theoretical and experimental works on radiative opacity. Two large sets of SSMs, each based on a different canonical set of solar abundances with high and low metallicity (Z), are computed to determine model uncertainties and correlations among different observables. We present detailed comparisons of high-and low-Z models against different ensembles of solar observables,. including solar neutrinos, surface helium abundance, depth of the. convective envelope, and sound speed profile. A global comparison, including all observables, yields a p-value of 2.7 sigma for the high-Z model and 4.7 sigma for the low-Z one. When the sound speed differences in the narrow region of 0.65 < r/R-circle dot < 0.70 are excluded from the analysis, results are 0.9 sigma and 3.0 sigma for high-and low-Z models respectively. These results show that. high-Z models agree well with solar data but have a systematic problem right below the bottom of the convective envelope linked to steepness of molecular weight and temperature gradients, and that low-Z models lead to a much more general disagreement with solar data. We also show that, while simple parametrizations of opacity uncertainties can strongly alleviate the solar abundance problem, they are insufficient to substantially improve the agreement of SSMs with helioseismic data beyond that obtained for high-Z models due to the intrinsic correlations of theoretical predictions.
Address [Vinyoles, Nuria; Serenelli, Aldo M.] CSIC IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain, Email: vinyoles@ice.csic.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000401145700018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3145
Permanent link to this record
 

 
Author Bellomo, N.; Bellini, E.; Hu, B.; Jimenez, R.; Pena-Garay, C.; Verde, L.
Title Hiding neutrino mass in modified gravity cosmologies Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 043 - 12pp
Keywords cosmological neutrinos; modified gravity; neutrino astronomy; neutrino masses from cosmology
Abstract Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.
Address [Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia] Univ Barcelona UB IEEC, ICC, Marti & Franques 1, Barcelona 08028, Spain, Email: nicola.bellomo@icc.ub.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000399455000043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3078
Permanent link to this record
 

 
Author Caputo, A.; Pena-Garay, C.; Witte, S.J.
Title Looking for axion dark matter in dwarf spheroidal galaxies Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages 083024 - 6pp
Keywords
Abstract We study the extent to which the decay of cold dark matter axions can be probed with forthcoming radio telescopes such as the Square Kilometer Array (SKA). In particular, we focus on signals arising from dwarf spheroidal galaxies, where astrophysical uncertainties are reduced and the expected magnetic field strengths are such that signals arising from axion decay may dominate over axion-photon conversion in a magnetic field. We show that with similar to 100 hr of observing time, SKA could improve current sensitivity by 2-3 orders of magnitude-potentially obtaining sufficient sensitivity to begin probing the decay of cold dark matter axions.
Address [Caputo, Andrea; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000448458600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3788
Permanent link to this record
 

 
Author Antonelli, V.; Miramonti, L.; Pena-Garay, C.; Serenelli, A.
Title Solar Neutrinos Type Journal Article
Year 2013 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2013 Issue Pages 351926 - 34pp
Keywords
Abstract The study of solar neutrinos has given a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.
Address Univ Milan, Dipartimento Fis, I-20133 Milan, Italy, Email: vito.antonelli@mi.infn.it
Corporate Author Thesis
Publisher Hindawi Publishing Corporation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000316881700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1392
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Bird, S.; Pena-Garay, C.; Viel, M.
Title Non-linear evolution of the cosmic neutrino background Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 019 - 30pp
Keywords cosmological neutrinos; neutrino properties; neutrino masses from cosmology
Abstract We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference Lambda CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10(11) – 10(15) h(-1) M-circle dot, over a redshift range z = 0 – 2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than similar to 10(13.5) h(-1) M-circle dot. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above similar to 200 h(-1) kpc at z = 0, and are stable with respect to box-size and starting redshift of the simulation. Our findings are particularly important in view of upcoming large-scale structure surveys, like Euclid, that are expected to probe the non-linear regime at the percent level with lensing and clustering observations.
Address INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy, Email: villaescusa@oats.inaf.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000316989200020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1435
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C.
Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 043 - 17pp
Keywords neutrino masses from cosmology; double beta decay
Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.
Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000316989200044 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1434
Permanent link to this record
 

 
Author Borexino Collaboration (Bellini, G. et al); Pena-Garay, C.
Title Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 11 Pages 112007 - 68pp
Keywords
Abstract Borexino has been running since May 2007 at the Laboratori Nazionali del Gran Sasso laboratory in Italy with the primary goal of detecting solar neutrinos. The detector a large unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity is optimized for the study of the lower energy part of the spectrum. During Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the Be-7 solar neutrinos ruled out any significant day-night asymmetry of their interaction rate made the first direct observation of the pep neutrinos and set the tightest upper limit on the flux of solar neutrinos produced in the CNO cycle (carbon nitrogen oxigen) where carbon nitrogen and oxygen serve as catalysts in the fusion process. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds quantify their event rates describe the methods for their identification selection or subtraction and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources the detailed modeling of the detector response the ability to define an innermost fiducial volume with extremely low background via software cuts and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the Be-7 neutrino interaction rate. The period the amplitude and the phase of the observed modulation are consistent with the solar origin of these events and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of Phase-I results in the context of the neutrino oscillation physics and solar models are presented.
Address [Bellini, G.; Avanzini, M. Buizza; Caccianiga, B.; D'Angelo, D.; Giammarchi, M.; Lombardi, P.; Ludhova, L.; Meroni, E.; Miramonti, L.; Ranucci, G.; Re, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000338663100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1856
Permanent link to this record
 

 
Author Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.
Title Cosmological data analysis of f(R) gravity models Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 004 - 18pp
Keywords modified gravity; cosmological parameters from LSS
Abstract A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.
Address [Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Valencia 46071, Spain, Email: girones@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000284825100004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 315
Permanent link to this record