|   | 
Details
   web
Records
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.
Title Global constraints on neutral-current generalized neutrino interactions Type (up) Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 061 - 26pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract We study generalized neutrino interactions (GNI) for several neutrino processes, including neutrinos from electron-positron collisions, neutrino-electron scattering, and neutrino deep inelastic scattering. We constrain scalar, pseudoscalar, and tensor new physics effective couplings, based on the standard model effective field theory at low energies. We have performed a global analysis for the different effective couplings. We also present the different individual constraints for each effective parameter (scalar, pseudoscalar, and tensor). Being a global analysis, we show robust results for the restrictions on the different GNI parameters and improve some of these bounds.
Address [Escrihuela, F. J.] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000675383900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4911
Permanent link to this record
 

 
Author Mandal, S.; Romao, J.C.; Srivastava, R.; Valle, J.W.F.
Title Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies Type (up) Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 029 - 38pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract The Standard Model (SM) vacuum is unstable for the measured values of the top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when neutrino masses are generated through spontaneous low-scale lepton number violation. In the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive CP-even scalar plus a massless Nambu-Goldstone boson, called majoron. For TeV scale breaking of lepton number, Higgs bosons can have a sizeable decay into the invisible majorons. We examine the interplay and complementarity of vacuum stability and perturbativity restrictions, with collider constraints on visible and invisible Higgs boson decay channels. This simple framework may help guiding further studies, for example, at the proposed FCC facility.
Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedratico Jose Beltran 2, E-46980 Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000672676400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4917
Permanent link to this record
 

 
Author Arbelaez, C.; Dib, C.; Monsalvez-Pozo, K.; Schmidt, I.
Title Quasi-Dirac neutrinos in the linear seesaw model Type (up) Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 154 - 22pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We implement a minimal linear seesaw model (LSM) for addressing the Quasi-Dirac (QD) behaviour of heavy neutrinos, focusing on the mass regime of M-N less than or similar to M-W. Here we show that for relatively low neutrino masses, covering the few GeV range, the same-sign to opposite-sign dilepton ratio, R-ll, can be anywhere between 0 and 1, thus signaling a Quasi-Dirac regime. Particular values of R-ll are controlled by the width of the QD neutrino and its mass splitting, the latter being equal to the light-neutrino mass m(nu) in the LSM scenario. The current upper bound on m(nu 1) together with the projected sensitivities of current and future |U-N l|(2) experimental measurements, set stringent constraints on our low-scale QD mass regime. Some experimental prospects of testing the model by LHC displaced vertex searches are also discussed.
Address [Arbelaez, Carolina; Dib, Claudio; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000677622200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4930
Permanent link to this record
 

 
Author Coloma, P.; Lopez-Pavon, J.; Rosauro-Alcaraz, S.; Urrea, S.
Title New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties Type (up) Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 065 - 33pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We study the capabilities of the DUNE near detector to probe deviations from unitarity of the leptonic mixing matrix, the 3+1 sterile formalism and Non-Standard Interactions affecting neutrino production and detection. We clarify the relation and possible mappings among the three formalisms at short-baseline experiments, and we add to current analyses in the literature the study of the nu(mu)-> nu(tau) appearance channel. We study in detail the impact of spectral uncertainties on the sensitivity to new physics using the DUNE near detector, which has been widely overlooked in the literature. Our analysis shows that this plays an important role on the results and, in particular, that it can lead to a strong reduction in the sensitivity to sterile neutrinos from nu(mu)-> nu(e) transitions, by more than two orders of magnitude. This stresses the importance of a joint experimental and theoretical effort to improve our understanding of neutrino nucleus cross sections, as well as hadron production uncertainties and beam focusing effects. Nevertheless, even with our conservative and more realistic implementation of systematic uncertainties, we find that an improvement over current bounds in the new physics frameworks considered is generally expected if spectral uncertainties are below the 5% level.
Address [Coloma, Pilar; Rosauro-Alcaraz, Salvador] Univ Autonoma Madrid, Inst Fis Teor, UAM CSIC, Calle Nicolas Cabrera 13-15, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000686712300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4944
Permanent link to this record
 

 
Author Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Heavy neutral leptons in effective field theory and the high-luminosity LHC Type (up) Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 039 - 34pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract Heavy neutral leptons (HNLs) with masses around the electroweak scale are expected to be rather long-lived particles, as a result of the observed smallness of the active neutrino masses. In this work, we study long-lived HNLs in NRSMEFT, a Standard Model (SM) extension with singlet fermions to which we add non-renormalizable operators up to dimension-6. Operators which contain two HNLs can lead to a sizable enhancement of the production cross sections, compared to the minimal case where HNLs are produced only via their mixing with the SM neutrinos. We calculate the expected sensitivities for the ATLAS detector and the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP in this setup. The sensitive ranges of the HNL mass and of the active-heavy mixing angle are much larger than those in the minimal case. We study both, Dirac and Majorana, HNLs and discuss how the two cases actually differ phenomenologically, for HNL masses above roughly 100 GeV.
Address [Cottin, Giovanna] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Diagonal Las Torres 2640, Santiago, Chile, Email: giovanna.cottin@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000694840800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4970
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z.
Title EFT at FASER nu Type (up) Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 086 - 46pp
Keywords Effective Field Theories; Neutrino Physics
Abstract We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: afalkows017@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000707348700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5002
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA Type (up) Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 180 - 26pp
Keywords Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles theta(14), theta(24), theta(34) and the effective angle theta(mu e), over a broad range of mass squared difference Delta m(41)(2) similar to [10(-5), 10] eV(2), allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: jcoelho@apc.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000710339200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5010
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Martinez-Mirave, P.; Pastor, S.; Tortola, M.
Title Cosmological radiation density with non-standard neutrino-electron interactions Type (up) Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 820 Issue Pages 136508 - 9pp
Keywords Neutrino interactions; Non-standard neutrino interactions; Cosmology; Neutrino oscillations
Abstract Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations.
Address [de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000713101800031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5023
Permanent link to this record
 

 
Author Gariazzo, S.; de Salas, P.F.; Pisanti, O.; Consiglio, R.
Title PArthENoPE revolutions Type (up) Journal Article
Year 2022 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 271 Issue Pages 108205 - 13pp
Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics
Abstract This paper presents the main features of a new and updated version of the program PArthENoPE, which the community has been using for many years for computing the abundances of light elements produced during Big Bang Nucleosynthesis. This is the third release of the PArthENoPE code, after the 2008 and the 2018 ones, and will be distributed from the code's website, http://parthenope.na.infn.it. Apart from minor changes, the main improvements in this new version include a revisited implementation of the nuclear rates for the most important reactions of deuterium destruction, H-2(p,gamma) He-3, H-2(d, n)He-3 and H-2(d, p)H-3, and a re-designed GUI, which extends the functionality of the previous one. The new GUI, in particular, supersedes the previous tools for running over grids of parameters with a better management of parallel runs, and it offers a brand-new set of functions for plotting the results. Program summary Program title: PArthENoPE 3.0 CPC Library link to program files: https://doi.org/10.17632/wygr7d8yt9.2 Developer's repository link: http://parthenope.na.infn.it Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems, Python GUI for running and plotting Journal reference of previous version: Comput. Phys. Commun. 233 (2018) 237-242 Does the new version supersede the previous version?: Yes Reasons for the new version: Update of the physics and improvements in the GUI Summary of revisions: Update of the physics implemented in the Fortran code and improvements in the GUI functionalities, in particular new plotting functions.
Address [Gariazzo, S.] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: pisanti@na.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000720461800020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5027
Permanent link to this record
 

 
Author Salesa Greus, F.; Sanchez Losa, A.
Title Multimessenger Astronomy with Neutrinos Type (up) Journal Article
Year 2021 Publication Universe Abbreviated Journal Universe
Volume 7 Issue 11 Pages 397 - 11pp
Keywords multimessenger astronomy; astroparticle physics; neutrinos
Abstract Multimessenger astronomy is arguably the branch of the astroparticle physics field that has seen the most significant developments in recent years. In this manuscript, we will review the state-of-the-art, the recent observations, and the prospects and challenges for the near future. We will give special emphasis to the observation carried out with neutrino telescopes.
Address [Salesa Greus, Francisco; Sanchez Losa, Agustin] Univ Valencia, CSIC, IFIC Inst Fis Corpuscular, C Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: sagreus@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000724957500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5036
Permanent link to this record