toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author n_TOF Collaboration (Mendoza, E. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (down) Measurement and analysis of the Am-243 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 90 Issue 3 Pages 034608 - 16pp  
  Keywords  
  Abstract Background: The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Improvement of the Am-243(n, gamma) cross section uncertainty. Method: The Am-243(n, gamma) cross section has been measured at the n_TOF facility at CERN with a BaF2 total absorption calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The Am-243(n, gamma) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature have been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the Am-243(n, gamma) cross section uncertainty and suggest that this cross section is underestimated up to 25% in the neutron energy range between 50 eV and a few keV in the present evaluated data libraries.  
  Address [Mendoza, E.; Cano-Ott, D.; Guerrero, C.; Alvarez-Velarde, F.; Balibrea, J.; Gonzalez-Romero, E.; Martinez, T.; Villamarin, D.; Vicente, M. C.] CIEMAT, E-28040 Madrid, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341912100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1935  
Permanent link to this record
 

 
Author n_TOF Collaboration (Fraval, K. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. doi  openurl
  Title (down) Measurement and analysis of the Am-241(n,gamma) cross section with liquid scintillator detectors using time-of-flight spectroscopy at the n_TOF facility at CERN Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 89 Issue 4 Pages 044609 - 14pp  
  Keywords  
  Abstract The Am-241(n,gamma) cross section has been measured at the n_TOF facility at CERN using deuterated benzene liquid scintillators, commonly known as C6D6 detectors, and time-of-flight spectrometry. The results in the resolved resonance range bring new constraints to evaluations below 150 eV, and the energy upper limit was extended from 150 to 320 eV with a total of 172 new resonances not present in current evaluations. The thermal capture cross section was found to be sigma(th) = 678 +/- 68 b, which is in good agreement with evaluations and most previous measurements. The capture cross section in the unresolved resonance region was extracted in the remaining energy range up to 150 keV, and found to be larger than current evaluations and previous measurements.  
  Address [Fraval, K.; Gunsing, F.; Belloni, F.; Berthoumieux, E.; Lampoudis, C.] CEA Saclay, Irfu, F-91191 Gif Sur Yvette, France, Email: frank.gunsing@cea.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000335321400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1778  
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title (down) Measurement and analysis of the Am-241 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 97 Issue 5 Pages 054616 - 21pp  
  Keywords  
  Abstract The Am-241(n, gamma) cross section has been measured at the nTOF facility at CERN with the nTOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.  
  Address [Mendoza, E.; Cano-Ott, D.; Balibrea, J.; Becares, V; Garcia, A. R.; Gonzalez, E.; Lopez, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433032300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3584  
Permanent link to this record
 

 
Author Rodriguez, D. et al; Algora, A.; Rubio, B.; Tain, J.L. doi  openurl
  Title (down) MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR Type Journal Article
  Year 2010 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 183 Issue Pages 1-123  
  Keywords  
  Abstract Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.  
  Address [Rodriguez, D.; Lallena, A. M.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain, Email: danielrodriguez@ugr.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280061400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 412  
Permanent link to this record
 

 
Author Orrigo, S.E.A.; Tain, J.L.; Mont-Geli, N.; Tarifeño-Saldivia, A.; Fraile, L.M.; Grieger, M.; Agramunt, J.; Algora, A.; Bemmerer, D.; Calvino, F.; Cortes, G.; De Blas, A.; Dillmann, I.; Dominguez Bugarin, A.; Garcia, R.; Nacher, E.; Tolosa-Delgado, A. url  doi
openurl 
  Title (down) Long-term evolution of the neutron rate at the Canfranc Underground Laboratory Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 9 Pages 814 - 11pp  
  Keywords  
  Abstract We report results on the long-term variation of the neutron counting rate at the Canfranc Underground Laboratory, of importance for several low-background experiments installed there, including rare-event searches. The measurement campaign was performed employing the High Efficiency Neutron Spectrometry Array (HENSA) mounted in Hall A and lasted 412 live days. The present study is the first long-term measurement of the neutron rate with sensitivity over a wide range of neutron energies (from thermal up to 0.1 GeV and beyond) performed in any underground laboratory so far. Data on the environmental variables inside the experimental hall (radon concentration, air temperature, air pressure and humidity) were also acquired during all the measurement campaign. We have investigated for the first time the evolution of the neutron rate for different energies of the neutrons and its correlation with the ambient variables.  
  Address [Orrigo, S. E. A.; Tain, J. L.; Agramunt, J.; Algora, A.; Nacher, E.; Tolosa-Delgado, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: Sonja.Orrigo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000853333800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5358  
Permanent link to this record
 

 
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Aysto, J; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. doi  openurl
  Title (down) Large Impact of the Decay of Niobium Isomers on the Reactor (v)over-bar(e) Summation Calculations Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue 4 Pages 042502 - 6pp  
  Keywords  
  Abstract Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.  
  Address [Guadilla, V; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457139600009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3894  
Permanent link to this record
 

 
Author n_TOF Collaboration (Stamatopoulos, A. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title (down) Investigation of the Pu-240(n, f) reaction at the n_TOF/EAR2 facility in the 9 meV-6 MeV range Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 102 Issue 1 Pages 014616 - 23pp  
  Keywords  
  Abstract Background: Nuclear waste management is considered amongst the major challenges in the field of nuclear energy. A possible means of addressing this issue is waste transmutation in advanced nuclear systems, whose operation requires a fast neutron spectrum. In this regard, the accurate knowledge of neutron-induced reaction cross sections of several (minor) actinide isotopes is essential for design optimization and improvement of safety margins of such systems. One such case is Pu-240, due to its accumulation in spent nuclear fuel of thermal reactors and its usage in fast reactor fuel. The measurement of the Pu-240(n, f) cross section was previously attempted at the CERN nTOF facility EAR1 measuring station using the time-of-flight technique. Due to the low amount of available material and the given flux at EAR1, the measurement had to last several months to achieve a sufficient statistical accuracy. This long duration led to detector deterioration due to the prolonged exposure to the high alpha activity of the fission foils, therefore the measurement could not be successfully completed. Purpose: It is aimed to determine whether it is feasible to study neutron-induced fission at nTOF/EAR2 and provide data on the Pu-240(n, f) reaction in energy regions requested for applications. Methods: The study of the Pu-240(n, f) reaction was made at a new experimental area (EAR2) with a shorter flight path which delivered on average 30 times higher flux at fast neutron energies. This enabled the measurement to be performed much faster, thus limiting the exposure of the detectors to the intrinsic activity of the fission foils. The experimental setup was based on microbulk Micromegas detectors and the time-of-flight data were analyzed with an optimized pulse-shape analysis algorithm. Special attention was dedicated to the estimation of the non-negligible counting loss corrections with the development of a new methodology, and other corrections were estimated via Monte Carlo simulations of the experimental setup. Results: This new measurement of the Pu-240(n, f) cross section yielded data from 9 meV up to 6 MeV incident neutron energy and fission resonance kernels were extracted up to 10 keV. Conclusions: Neutron-induced fission of high activity samples can be successfully studied at the n_TOF/EAR2 facility at CERN covering a wide range of neutron energies, from thermal to a few MeV.  
  Address [Stamatopoulos, A.; Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Diakaki, M.] Natl Tech Univ Athens, Athens, Greece, Email: athanasios.stamatopoulos@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551057500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4466  
Permanent link to this record
 

 
Author n_TOF Collaboration (Zugec, P. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title (down) Integral measurement of the C-12(n, p)B-12 reaction up to 10 GeV Type Journal Article
  Year 2016 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 52 Issue 4 Pages 101 - 13pp  
  Keywords  
  Abstract The integral measurement of the C-12(n, p)B-12 reaction was performed at the neutron time-of-flight facility nTOF at CERN. The total number of B-12 nuclei produced per neutron pulse of the nTOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the U-235(n, f) reaction, the neutron energy spectrum above 200 MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the C-12(n, p)B-12 reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the B-12 production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.  
  Address [Zugec, P.; Bosnar, D.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia, Email: pzugec@phy.hr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376181400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2683  
Permanent link to this record
 

 
Author Nichols, A.L.; Dimitriou, P.; Algora, A.; Fallot, M.; Giot, L.; Kondev, F.G.; Yoshida, T.; Karny, M.; Mukherjee, G.; Rasco, B.C.; Rykaczewski, K.P.; Sonzogni, A.A.; Tain, J.L. url  doi
openurl 
  Title (down) Improving fission-product decay data for reactor applications: part I-decay heat Type Journal Article
  Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 59 Issue 4 Pages 78 - 78pp  
  Keywords  
  Abstract Effort has been expended to assess the relative merits of undertaking further decay-data measurements of the main fission-product contributors to the decay heat of neutron-irradiated fissionable fuel and related actinides by means of Total Absorption Gamma-ray Spectroscopy (TAGS – sometimes abbreviated to TAS) and Discrete Gamma-ray Spectroscopy (DGS). This review has been carried out following similar work performed under the auspices of OECD/WPEC-Subgroup 25 (2005-2007) and the International Atomic Energy Agency (2009, 2014), and various highly relevant TAGS measurements completed as a consequence of such assessments. We present our recommendations for new decay-data evaluations, along with possible requirements for total absorption and discrete high-resolution gamma-ray spectroscopy studies that cover approximately 120 fission products and various isomeric states.  
  Address [Nichols, A. L.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England, Email: P.Dimitriou@iaea.org  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000984480400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5527  
Permanent link to this record
 

 
Author Algora, A. et al; Jordan, D.; Tain, J.L.; Rubio, B.; Agramunt, J.; Perez-Cerdan, A.B.; Molina, F.; Caballero, L.; Nacher, E. doi  openurl
  Title (down) Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1479-1482  
  Keywords Decay heat; Total absorption; Trap-assisted spectroscopy  
  Abstract The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaskyla, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.  
  Address [Algora, A; Jordan, D; Tain, JL; Rubio, B; Agramunt, J; Caballero, L; Nacher, E; Perez-Cerdan, AB; Molina, F] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: algora@ific.uv.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 729  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva