|   | 
Details
   web
Records
Author Forero, D.V.; Morisi, S.; Romao, J.C.; Valle, J.W.F.
Title (down) Neutrino mixing with revamped A(4) flavor symmetry Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 1 Pages 016003 - 7pp
Keywords
Abstract We suggest a minimal extension of the simplest A(4) flavor model that can induce a nonzero theta(13) value, as required by recent neutrino oscillation data from reactors and accelerators. The predicted correlation between the atmospheric mixing angle theta(23) and the magnitude of theta(13) leads to an allowed region substantially smaller than indicated by neutrino-oscillation global fits. Moreover, the scheme correlates CP violation in neutrino oscillations with the octant of the atmospheric mixing parameter theta(23) in such a way that, for example, maximal mixing necessarily violates CP. We briefly comment on other phenomenological features of the model.
Address [Forero, D. V.; Romao, J. C.] Univ Tecn Lisboa, Dept Fis, Inst Super Tecn, P-1049001 Lisbon, Portugal, Email: dvanegas@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000321125000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1507
Permanent link to this record
 

 
Author Morisi, S.; Valle, J.W.F.
Title (down) Neutrino masses and mixing: a flavour symmetry roadmap Type Journal Article
Year 2013 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.
Volume 61 Issue 4-5 Pages 466-492
Keywords Neutrino masses; neutrino mixing; flavour symmetry
Abstract Over the last ten years tri-bimaximal mixing has played an important role in modeling the flavour problem. We give a short review of the status of flavour symmetry models of neutrino mixing. We concentrate on non-Abelian discrete symmetries, which provide a simple way to account for the TBM pattern. We discuss phenomenological implications such as neutrinoless double beta decay, lepton flavour violation as well as theoretical aspects such as the possibility to explain quarks and leptons within a common framework, such as grand unified models.
Address Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: morisi@ific.uv.es
Corporate Author Thesis
Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0015-8208 ISBN Medium
Area Expedition Conference
Notes WOS:000317019900007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1412
Permanent link to this record
 

 
Author Bonilla, C.; Romao, J.C.; Valle, J.W.F.
Title (down) Neutrino mass and invisible Higgs decays at the LHC Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 11 Pages 113015 - 7pp
Keywords
Abstract The discovery of the Higgs boson suggests that neutrinos also get their mass from spontaneous symmetry breaking. In the simplest ungauged lepton-number scheme, the Standard Model Higgs now has two other partners: a massive CP-even scalar, and the massless Nambu-Goldstone boson, called the Majoron. For weak-scale breaking of lepton number the invisible decays of the CP-even Higgs bosons to the Majoron lead to potentially copious sources of events with large missing energy. Using LHC results, we study how the constraints on invisible decays of the Higgs boson restrict the relevant parameters, substantially extending those previously derived from LEP and potentially shedding light on the scale of spontaneous lepton-number violation.
Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000356928900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2285
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) Neutrino interaction classification with a convolutional neural network in the DUNE far detector Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 9 Pages 092003 - 20pp
Keywords
Abstract The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000587596500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4598
Permanent link to this record
 

 
Author Bonilla, C.; Valle, J.W.F.
Title (down) Naturally light neutrinos in Diracon model Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 762 Issue Pages 162-165
Keywords
Abstract We propose a simple model for Dirac neutrinos where the smallness of neutrino mass follows from a parameter kappa whose absence enhances the symmetry of the theory. Symmetry breaking is performed in a two-doublet Higgs sector supplemented by a gauge singlet scalar, realizing an accidental global U(1) symmetry. Its spontaneous breaking at the few TeV scale leads to a physical Nambu -Goldstone – boson the Diracon, denoted D – which is restricted by astrophysics and induces invisible Higgs decays such as h -> DD. The scheme provides a rich, yet very simple scenario for symmetry breaking studies at colliders such as the LHC.
Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000388473700022 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2978
Permanent link to this record