|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title (down) Two-particle Bose-Einstein correlations in pp collisions at root s=13 TeV measured with the ATLAS detector at the LHC Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 7 Pages 608 - 38pp
Keywords
Abstract This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 μb(-1) and 8.4 nb(-1), respectively. The BEC are measured for pairs of like-sign charged particles, each with vertical bar eta vertical bar < 2.5, for two kinematic ranges: the first with particle pr > 100 MeV and the second with particle pr > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000824937700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5296
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title (down) Two-particle azimuthal correlations in photonuclear ultraperipheral Pb plus Pb collisions at 5.02 TeV with ATLAS Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 104 Issue 1 Pages 014903 - 31pp
Keywords
Abstract Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb(-1) of 5.02 TeV Pb+Pb collision data collected by the ATLAS experiment at the CERN Large Hadron Collider. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and charged-particle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the nonflow contribution to the correlation. Significant nonzero values of the second-and third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton-proton and proton-lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collisions.
Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000672773000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4918
Permanent link to this record
 

 
Author Becchetti, M.; Bonciani, R.; Cieri, L.; Coro, F.; Ripani, F.
Title (down) Two-loop form factors for diphoton production in quark annihilation channel with heavy quark mass dependence Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 105 - 28pp
Keywords Higher-Order Perturbative Calculations; Top Quark
Abstract We present the computation of the two-loop form factors for diphoton production in the quark annihilation channel. These quantities are relevant for the NNLO QCD corrections to diphoton production at LHC recently presented in [1]. The computation is performed retaining full dependence on the mass of the heavy quark in the loops. The master integrals are evaluated by means of differential equations which are solved exploiting the generalised power series technique.
Address [Becchetti, Matteo] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy, Email: matteo.becchetti@unito.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001130350300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5865
Permanent link to this record
 

 
Author Centelles Chulia, S.; Rodejohann, W.; Saldana-Salazar, U.J.
Title (down) Two-Higgs-doublet models with a flavored Z(2) symmetry Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 3 Pages 035013 - 12pp
Keywords
Abstract Two-Higgs-doublet models usually consider an ad-hoc Z(2) discrete symmetry to avoid flavor changing neutral currents. We consider a new class of two-Higgs-doublet models where Z(2) is enlarged to the symmetry group F(sic)Z(2), i.e., an inner semidirect product of a discrete symmetry group F and Z(2). In such a scenario, the symmetry constrains the Yukawa interactions but goes unnoticed by the scalar sector. In the most minimal scenario, Z(3)(sic)Z(2) = D-3, flavor changing neutral currents mediated by scalars are absent at tree and one-loop level, while at the same time predictions to quark and lepton mixing are obtained, namely a trivial Cabibbo-Kobayashi-Maskawa matrix and a Pontecorvo-Maki-Nakagawa-Sakata matrix (upon introduction of three heavy right-handed neutrinos) containing maximal atmospheric mixing. Small extensions allow to fully reproduce mixing parameters, including cobimaximal mixing in the lepton sector (maximal atmospheric mixing and a maximal charge-parity violating phase).
Address [Centelles Chulia, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000513216400008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4297
Permanent link to this record
 

 
Author Courtoy, A.; Noguera, S.; Scopetta, S.
Title (down) Two-current correlations in the pion in the Nambu and Jona-Lasinio model Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 10 Pages 909 - 11pp
Keywords
Abstract We present an analysis of two-current correlations for the pion in the Nambu-Jona-Lasinio model, with Pauli-Villars regularization. We provide explicit expressions in momentum space for two-current correlations corresponding to the zeroth component of the vector Dirac bilinear in the quark vertices, which has been evaluated on the lattice, thinking to applications in a high energy framework, as a step towards the calculation of pion double parton distributions. The numerical results show a remarkable qualitative agreement with recent lattice data. The factorization approximation into one-body currents is discussed based on previous evaluation of the relevant low energy matrix elements in the Nambu-Jona-Lasinio model, confirming the lattice result.
Address [Courtoy, Aurore] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico, Email: aurore@fisica.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000576966100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4564
Permanent link to this record