toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Molina, R.; Oset, E. url  doi
openurl 
  Title (down) T-cS (2900) as a threshold effect from the interaction of the D* K *, D *(s)rho channels Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 5 Pages 056015 - 7pp  
  Keywords  
  Abstract We look at the mass distribution of the D(S)(+)i Pi(-) In the B-0 ->(DDS+)-D-0 Pi(-)decay, where a peak has been observed in the region of the D (*) (s)rho, D* K* thresholds. By creating these two channels together with a D (0) in B-0 decay and letting them interact as coupled channels, we obtain a structure around their thresholds, short of producing a bound state, which leads to a peak in the D-S(+) Pi(-)mass distribution in the B-0 -> (DDS+)-D-0 Pi(-)decay. We conclude that the interaction between the D*K* and D (*) (s)rho is essential to produce the cusp structure that we associate to the recently seen Tcs(2900), and that its experimental width is mainly due to the decay width of the rho meson. The peak obtained together with a smooth background reproduces fairly well the experimental mass distribution observed in the B (0)-> (DDS+)-D-0 Pi(-) decay.  
  Address [Molina, R.] Univ Valencia, Ctr Mixto, Inst Invest Paterna, CSIC,Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000989395900006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5568  
Permanent link to this record
 

 
Author Hiller Blin, A.N. url  doi
openurl 
  Title (down) Systematic study of octet-baryon electromagnetic form factors in covariant chiral perturbation theory Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 9 Pages 093008 - 19pp  
  Keywords  
  Abstract We perform a complete and systematic calculation of the octet-baryon form factors within the fully covariant approach of SU(3) chiral perturbation theory at O(p(3)). We use the extended on-mass shell renormalization scheme and include explicitly the vector mesons and the spin-3/2 decuplet intermediate states. Comparing these predictions with data including magnetic moments, charges, and magnetic radii, we determine the unknown low-energy constants and give predictions for yet unmeasured observables, such as the magnetic moment of the Sigma(0) and the charge and magnetic radii of the hyperons.  
  Address [Hiller Blin, A. N.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor,Ctr Mixto, E-46071 Valencia, Spain, Email: hillerbl@uni-mainz.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415904300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3374  
Permanent link to this record
 

 
Author Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. url  doi
openurl 
  Title (down) Symmetry preserving truncations of the gap and Bethe-Salpeter equations Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 9 Pages 096010 - 7pp  
  Keywords  
  Abstract Ward-Green-Takahashi (WGT) identities play a crucial role in hadron physics, e.g. imposing stringent relationships between the kernels of the one-and two-body problems, which must be preserved in any veracious treatment of mesons as bound states. In this connection, one may view the dressed gluon-quark vertex, Gamma(alpha)(mu), as fundamental. We use a novel representation of Gamma(alpha)(mu), in terms of the gluon-quark scattering matrix, to develop a method capable of elucidating the unique quark-antiquark Bethe-Salpeter kernel, K, that is symmetry consistent with a given quark gap equation. A strength of the scheme is its ability to expose and capitalize on graphic symmetries within the kernels. This is displayed in an analysis that reveals the origin of H-diagrams in K, which are two-particle-irreducible contributions, generated as two-loop diagrams involving the three-gluon vertex, that cannot be absorbed as a dressing of Gamma(alpha)(mu) in a Bethe-Salpeter kernel nor expressed as a member of the class of crossed-box diagrams. Thus, there are no general circumstances under which the WGT identities essential for a valid description of mesons can be preserved by a Bethe-Salpeter kernel obtained simply by dressing both gluon-quark vertices in a ladderlike truncation; and, moreover, adding any number of similarly dressed crossed-box diagrams cannot improve the situation.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376641000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2689  
Permanent link to this record
 

 
Author Bhattacharya, S.; Sil, A.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title (down) Symmetry origin of baryon asymmetry, dark matter, and neutrino mass Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 7 Pages 075005 - 10pp  
  Keywords  
  Abstract We propose a minimal model based on lepton number symmetry (and violation), to address a common origin of baryon asymmetry, dark matter and neutrino mass generation. The model consists of a vectorlike fermion to constitute the dark sector, three right-handed neutrinos (RHNs) to dictate leptogenesis and neutrino mass, while an additional complex scalar is assumed to be present in the early Universe the decay of which produces both dark matter and RHNs via lepton number violating and lepton number conserving interactions respectively. Interestingly, the presence of the same scalar helps in making the electroweak vacuum stable until the Planck scale. The unnatural largeness and smallness of the parameters required to describe correct experimental limits are attributed to lepton number violation. The allowed parameter space of the model is illustrated via a numerical scan.  
  Address [Bhattacharya, Subhaditya; Sil, Arunansu] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000874548200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5402  
Permanent link to this record
 

 
Author Rodejohann, W.; Valle, J.W.F. url  doi
openurl 
  Title (down) Symmetrical parametrizations of the lepton mixing matrix Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 7 Pages 073011 - 6pp  
  Keywords  
  Abstract Advantages of the original symmetrical form of the parametrization of the lepton mixing matrix are discussed. It provides a conceptually more transparent description of neutrino oscillations and lepton number violating processes like neutrinoless double beta decay, clarifying the significance of Dirac and Majorana phases. It is also ideal for parametrizing scenarios with light sterile neutrinos.  
  Address [Rodejohann, W] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: werner.rodejohann@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296885300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 800  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva