|   | 
Details
   web
Records
Author Boyero Garcia, R.; Carpentier, A.V.; Gomez-Cadenas, J.J.; Peralta Conde, A.
Title (down) A novel technique to achieve atomic macro-coherence as a tool to determine the nature of neutrinos Type Journal Article
Year 2016 Publication Applied Physics B Abbreviated Journal Appl. Phys. B
Volume 122 Issue 10 Pages 262 - 13pp
Keywords
Abstract The photon spectrum in macro-coherent atomic deexcitation via radiative emission of neutrino pairs has been proposed as a sensitive probe of the neutrino mass spectrum, capable of competing with conventional neutrino experiments. In this paper, we revisit this intriguing possibility, presenting an alternative method for inducing large coherence in a target based on adiabatic techniques. More concretely, we propose the use of a modified version of coherent population return (CPR), namely two-photon CPR, that turns out to be extremely robust with respect to the experimental parameters and capable of inducing a coherence close to 100 % in the target.
Address [Boyero Garcia, R.] Univ Salamanca, Fac Ciencias, E-37008 Salamanca, Spain, Email: robertobg@usal.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0946-2171 ISBN Medium
Area Expedition Conference
Notes WOS:000388419100013 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2871
Permanent link to this record
 

 
Author Hernandez, P.; Pena, C.; Ramos, A.; Gomez-Cadenas, J.J.
Title (down) A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times Type Journal Article
Year 2021 Publication Plos One Abbreviated Journal PLoS One
Volume 16 Issue 2 Pages e0244107 - 22pp
Keywords
Abstract The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.
Address [Hernandez, Pilar] Univ Valencia, Dept Fis Teor, Valencia, Spain, Email: m.pilar.hernandez@uv.es
Corporate Author Thesis
Publisher Public Library Science Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes WOS:000616739700053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4750
Permanent link to this record