|   | 
Details
   web
Records
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) Neutrino interaction classification with a convolutional neural network in the DUNE far detector Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 9 Pages 092003 - 20pp
Keywords
Abstract The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000587596500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4598
Permanent link to this record
 

 
Author Nieves, J.; Sanchez, F.; Ruiz Simo, I.; Vicente Vacas, M.J.
Title (down) Neutrino energy reconstruction and the shape of the charged current quasielastic-like total cross section Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 11 Pages 113008 - 9pp
Keywords
Abstract We show that because of the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events, and a distortion of the total flux-unfolded cross-section shape is produced. This amounts to a redistribution of strength from high to low energies, which gives rise to a sizable excess (deficit) of low (high) energy neutrinos. This distortion of the shape leads to a good description of the MiniBooNE unfolded charged current quasielastic-like cross sections published by A. A. Aguilar-Arevalo et al. [(MiniBooNE Collaboration), Phys. Rev. D 81, 092005 (2010)]. However, these changes in the shape are artifacts of the unfolding process that ignores multinucleon mechanisms.
Address [Nieves, J.] Ctr Mixto Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000305560500002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1077
Permanent link to this record
 

 
Author Barenboim, G.; Martinez-Mirave, P.; Ternes, C.A.; Tortola, M.
Title (down) Neutrino CPT violation in the solar sector Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 3 Pages 035039 - 10pp
Keywords
Abstract In this paper, we place new bounds on CPT violation in the solar neutrino sector analyzing the results from solar experiments and KamLAND. We also discuss the sensitivity of the next-generation experiments DUNE and Hyper-Kamiokande, which will provide accurate measurements of the solar neutrino oscillation parameters. The joint analysis of both experiments will further improve the precision due to cancellations in the systematic uncertainties regarding the solar neutrino flux. In combination with the next-generation reactor experiment JUNO, the bound on CPT violation in the solar sector could be improved by 1 order of magnitude in comparison with current constraints. The distinguishability among CPT-violating neutrino oscillations and neutrino nonstandard interactions in the solar sector is also addressed.
Address [Barenboim, G.; Martinez-Mirave, P.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Carrer Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001065884700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5692
Permanent link to this record
 

 
Author Archidiacono, M.; Giusarma, E.; Melchiorri, A.; Mena, O.
Title (down) Neutrino and dark radiation properties in light of recent CMB observations Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 10 Pages 103519 - 10pp
Keywords
Abstract Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoustic oscillation data are removed from the analyses and Hubble Telescope measurements are also exploited. A similar result is obtained within a standard cosmology with N-eff massless neutrinos, although in this case the agreement between these two measurements is also improved when considering simultaneously baryon acoustic oscillation data and Hubble Space Telescope measurements. In the N-eff massive neutrino case the two high multipole probes give very different results regardless of the external data sets used in the combined analyses. When considering extended cosmological scenarios with a dark energy equation of state or with a running of the scalar spectral index, the evidence for neutrino masses found for the South Pole Telescope in the three neutrino scenario disappears for all the data combinations explored here. Again, adding Hubble Telescope data seems to improve the agreement between the two high multipole cosmic microwave background measurements considered here. In the case in which a dark radiation background with unknown clustering properties is also considered, SPT data seem to exclude the standard value for the dark radiation viscosity c(vis)(2) = 1/3 at the 2 sigma C.L., finding evidence for massive neutrinos only when combining SPT data with baryon acoustic oscillation measurements.
Address Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000319254500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1462
Permanent link to this record
 

 
Author Carlomagno, J.P.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N.
Title (down) Neutral pseudoscalar and vector meson masses under strong magnetic fields in an extended NJL model: Mixing effects Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 7 Pages 074002 - 20pp
Keywords
Abstract Mixing effects on the mass spectrum of light neutral pseudoscalar and vector mesons in the presence of an external uniform magnetic field (B) over right arrow are studied in the framework of a two-flavor Nambu-Jona-Lasinio (NJL)-like model. The model includes isoscalar and isovector couplings both in the scalar-pseudoscalar and vector sectors, and also incorporates flavor mixing through a ' t Hooft-like term. Numerical results for the B dependence of meson masses are compared with present lattice QCD results. In particular, it is shown that the mixing between pseudoscalar and vector meson states leads to a significant reduction of the mass of the lightest state. The role of chiral symmetry and the effect of the alignment of quark magnetic moments in the presence of the magnetic field are discussed.
Address [Carlomagno, J. P.; Gomez Dumm, D.] Univ Nacl La Plata, IFLP, CONICET, Dept Fis,Fac Ciencias Exactas, RA-1900 La Plata, Argentina
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000898622400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5443
Permanent link to this record
 

 
Author Albertus, C.; Aoki, Y.; Boyle, P.A.; Christ, N.H.; Dumitrescu, T.T.; Flynn, J.M.; Ishikawa, T.; Izubuchi, T.; Loktik, O.; Sachrajda, C.T.; Soni, A.; Van de Water, R.S.; Wennekers, J.; Witzel, O.
Title (down) Neutral B-meson mixing from unquenched lattice QCD with domain-wall light quarks and static b quarks Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 1 Pages 014505 - 29pp
Keywords
Abstract We demonstrate a method for calculating the neutral B-meson decay constants and mixing matrix elements in unquenched lattice QCD with domain-wall light quarks and static b-quarks. Our computation is performed on the "2 + 1'' flavor gauge configurations generated by the RBC and UKQCD Collaborations with a lattice spacing of a approximate to 0.11 fm (a(-1) = 1.729 GeV) and a lattice spatial volume of approximately (1.8 fm)(3). We simulate at three different light sea quark masses with pion masses down to approximately 430 MeV, and extrapolate to the physical quark masses using a phenomenologically-motivated fit function based on next-to-leading order heavy-light meson SU(2) chiral perturbation theory. For the b-quarks, we use an improved formulation of the Eichten-Hill action with static link-smearing to increase the signal-to-noise ratio. We also improve the heavy-light axial current used to compute the B-meson decay constant to O(alpha(s)pa) using one-loop lattice perturbation theory. We present initial results for the SU(3)-breaking ratios f(Bs)/f(Bd) and xi = f(Bs)root B-Bs/f(Bd)root B-Bd, thereby demonstrating the viability of the method. For the ratio of decay constants, we find f(Bs)/f(Bd) = 1.15(12) and for the ratio of mixing matrix elements, we find xi = 1.13(12), where in both cases the errors reflect the combined statistical and systematic uncertainties, including an estimate of the size of neglected O(1/m(b)) effects.
Address [Albertus, C.; Flynn, J. M.; Sachrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000280124300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 405
Permanent link to this record
 

 
Author Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N.
Title (down) Neutral and charged pion properties under strong magnetic fields in the NJL model Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 5 Pages 054014 - 17pp
Keywords
Abstract In the framework of the Nambu-Jona-Lasino (NJL) model, we study the effect of an intense external uniform magnetic field on neutral and charged pion masses and decay form factors. In particular, the treatment of charged pions is carried out on the basis of the Ritus eigenfunction approach to magnetized relativistic systems. Our analysis shows that in the presence of the magnetic field three and four nonvanishing pion-to-vacuum hadronic form factors can be obtained for the case of the neutral and charged pions, respectively. As expected, it is seen that for nonzero magnetic field the pi(0) meson can still be treated as a pseudo Nambu-Goldstone boson, and consequently the corresponding form factors are shown to satisfy various chiral relations. For definite parametrizations of the model, numerical results for pi(0) and pi(+/-) masses and decay constants are obtained and compared with previous calculations given in the literature.
Address [Coppola, M.; Scoccola, N. N.] Consejo Nacl Invest Cient & Tecn, Rivadavia 1917, RA-1033 Buenos Aires, DF, Argentina
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000486642100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4148
Permanent link to this record
 

 
Author Xiao, C.W.; Bayar, M.; Oset, E.
Title (down) NDK, (K)over-barDN, and ND(K)over-bar molecules Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 3 Pages 034037 - 8pp
Keywords
Abstract We investigate theoretically baryon systems made of three hadrons which contain one nucleon and one D meson, and in addition another meson, (D) over tilde, K, or (K) over tilde. The systems are studied using the fixed center approximation to the Faddeev equations. The study is made assuming scattering of a K or a (K) over tilde on a DN cluster, which is known to generate the Lambda(c)(2595), or the scattering of a nucleon on the D (D) over tilde cluster, which has been shown to generate a hidden charm resonance named X(3700). We also investigate the configuration of scattering of N on the KD cluster, which is known to generate the D*(s0)(2317). In all cases we find bound states, with the NDK system, of exotic nature, more bound than the (K) over tilde DN.
Address [Xiao, CW; Bayar, M; Oset, E] Univ Valencia, Dept Fis Teor, Ctr Mixto, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000294135400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 725
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R.
Title (down) Nature of the lowest-lying odd parity charmed baryon Lambda(c)(2595) and Lambda(c)(2625) resonances Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 1 Pages 014018 - 17pp
Keywords
Abstract We study the structure of the Lambda(c) (2595) and Lambda(c) (2625) resonances in the framework of an effective field theory consistent with heavy quark spin and chiral symmetries, which incorporates the interplay between Sigma(()(c)*() )pi – ND(*()) baryon-meson degrees of freedom (d.o.f.) and bare P-wave c (u) over bard quark-model states. We show that these two resonances are not heavy quark spin symmetry partners. The J(P) = 3/2(-) Lambda(c) (2625) should be viewed mostly as a dressed three-quark state, whose origin is determined by a bare state, predicted to lie very close to the mass of the resonance. The J(P) = 1/2(-) Lambda(c) (2595) seems to have, however, a predominant molecular structure. This is because it is either the result of the chiral Sigma(c)pi interaction, whose threshold is located much closer than the mass of the bare three-quark state, or because the light d.o.f. in its inner structure are coupled to the unnatural 0(-) quantum numbers. We show that both situations can occur depending on the renormalization procedure used. We find some additional states, but the classification of the spectrum in terms of heavy quark spin symmetry is difficult, despite having used interactions that respect this symmetry. This is because the bare quark-model state and the Sigma(c)pi threshold are located extraordinarily close to the Lambda(c) (2625) and Lambda(c) (2595), respectively, and hence they play totally different roles in each sector.
Address [Nieves, J.; Pavao, R.] Ctr Mixto CSIC UV, Inst Invest Paterna, Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000509494900007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4272
Permanent link to this record
 

 
Author Yamagata-Sekihara, J.; Roca, L.; Oset, E.
Title (down) Nature of the K-2*(1430), K-3*(1780), K-4*(2045), K-5*(2380), and K-6* as K*-multi-rho states Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 9 Pages 094017 - 8pp
Keywords
Abstract We show that the K-2*(1430), K-3*(1780), K-4*(2045), K-5*(2380), and a not-yet-discovered K-6* resonance are basically molecules made of an increasing number of rho(770) and one K*(892) mesons. The idea relies on the fact that the vector-vector interaction in the s wave with spins aligned is very strong for both rho rho and K*rho. We extend a recent work, where several resonances showed up as multi-rho(770) molecules, to the strange sector including the K*(892) into the system. The resonant structures show up in the multibody scattering amplitudes, which are evaluated in terms of the unitary two-body vector-vector scattering amplitudes by using the fixed center approximation to the Faddeev equations.
Address [Yamagata-Sekihara, J.; Oset, E.] Univ Valencia, CSIC, Dept Fis Teor IFIC, Ctr Mixto,Inst Invest Paterna, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000284206500003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 323
Permanent link to this record