|   | 
Details
   web
Records
Author Linster, M.; Lopez-Pavon, J.; Ziegler, R.
Title (down) Neutrino observables from a U(2) flavor symmetry Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 1 Pages 015020 - 9pp
Keywords
Abstract We study the predictions for CP phases and absolute neutrino mass scale for broad classes of models with a U(2)-like flavor symmetry. For this purpose we consider the same special textures in neutrino and charged lepton mass matrices that are successful in the quark sector. While in the neutrino sector the U(2) structure enforces two texture zeros, the contribution of the charged lepton sector to the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix can be parametrized by two rotation angles. Restricting to the cases where at least one of these angles is small, we obtain three representative scenarios. In all scenarios we obtain a narrow prediction for the sum of neutrino masses in the range of 60-75 meV, possibly in the reach of upcoming galaxy survey experiments. All scenarios can be excluded if near-future experimental date provide evidence for either neutrinoless double-beta decay or inverted neutrino mass ordering.
Address [Linster, Matthias; Ziegler, Robert] Karlsruhe Inst Technol, Inst Theoret Teilchenphys, D-76131 Karlsruhe, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000609014300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4689
Permanent link to this record
 

 
Author Forero, D.V.; Morisi, S.; Romao, J.C.; Valle, J.W.F.
Title (down) Neutrino mixing with revamped A(4) flavor symmetry Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 1 Pages 016003 - 7pp
Keywords
Abstract We suggest a minimal extension of the simplest A(4) flavor model that can induce a nonzero theta(13) value, as required by recent neutrino oscillation data from reactors and accelerators. The predicted correlation between the atmospheric mixing angle theta(23) and the magnitude of theta(13) leads to an allowed region substantially smaller than indicated by neutrino-oscillation global fits. Moreover, the scheme correlates CP violation in neutrino oscillations with the octant of the atmospheric mixing parameter theta(23) in such a way that, for example, maximal mixing necessarily violates CP. We briefly comment on other phenomenological features of the model.
Address [Forero, D. V.; Romao, J. C.] Univ Tecn Lisboa, Dept Fis, Inst Super Tecn, P-1049001 Lisbon, Portugal, Email: dvanegas@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000321125000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1507
Permanent link to this record
 

 
Author de Gouvea, A.; Herrero-Garcia, J.; Kobach, A.
Title (down) Neutrino masses, grand unification, and baryon number violation Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 1 Pages 016011 - 11pp
Keywords
Abstract If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B – L) by two (or more) units, including neutron-antineutron oscillations and B – L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.
Address [de Gouvea, Andre; Herrero-Garcia, Juan; Kobach, Andrew] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000339482900016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1860
Permanent link to this record
 

 
Author Cepedello, R.; Escribano, P.; Vicente, A.
Title (down) Neutrino masses, flavor anomalies, and muon g-2 from dark loops Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 035034 - 6pp
Keywords
Abstract The lepton sector of the Standard Model is at present haunted by several intriguing anomalies, including an emerging pattern of deviations in b ? sll processes, with hints of lepton flavor universality violation, and a discrepancy in the muon anomalous magnetic moment. More importantly, it cannot explain neutrino oscillation data, which necessarily imply the existence of nonzero neutrino masses and lepton mixings. We propose a model that accommodates all the aforementioned anomalies, induces neutrino masses and provides a testable dark matter candidate. This is achieved by introducing a dark sector contributing to the observables of interest at the 1-loop level. Our setup provides a very economical explanation to all these open questions in particle physics and is compatible with the current experimental constraints.
Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001004183600012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5558
Permanent link to this record
 

 
Author Chala, M.; Titov, A.
Title (down) Neutrino masses in the Standard Model effective field theory Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 3 Pages 035002 - 8pp
Keywords
Abstract We compute the leading-logarithmic correction to the neutrino mass matrix in the Standard Model effective field theory (SMEFT) to dimension seven. In the limit of negligible lepton and down-type quark Yukawa couplings, it receives contributions from the Weinberg dimension-five operator as well as from 11 dimension-six and five dimension-seven independent interactions. Two of the main implications we derive from this result are the following. First, we find dimension-seven operators which, despite violating lepton number, do not renormalize neutrino masses at one loop. And second, we demonstrate that the presence of dimension-six operators around the TeV scale can modify the Standard Model prediction by up to O(50%). Our result comprises also one step forward towards the renormalization of the SMEFT to order v(3)/Lambda(3).
Address [Chala, Mikael] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain, Email: mikael.chala@ugr.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000681157900003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4924
Permanent link to this record
 

 
Author Peinado, E.; Vicente, A.
Title (down) Neutrino masses from R-parity violation with a Z(3) symmetry Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 9 Pages 093024 - 9pp
Keywords
Abstract We consider a supersymmetric model where the neutrino mass matrix arises from bilinear and trilinear R-parity violation, both restricted by a Z(3) flavor symmetry. Assuming flavor-blind soft supersymmetry breaking conditions, corrected at low energies due to running effects, we obtain a neutrino mass matrix in agreement with oscillation data. In particular, a large theta(13) angle can be easily accommodated. We also find a correlation between the reactor and atmospheric mixing angles. This leads in some scenarios to a clear deviation from theta(23) = pi/4. The lightest supersymmetric particle decay, dominated by the trilinear couplings, provides a direct way to test the model at colliders.
Address [Peinado, E.] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, E-46071 Valencia, Spain, Email: epeinado@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000311538000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1243
Permanent link to this record
 

 
Author Gonzalez Felipe, R.; Serodio, H.; Silva, J.P.
Title (down) Neutrino masses and mixing in A(4) models with three Higgs doublets Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 1 Pages 015015 - 10pp
Keywords
Abstract We study neutrino masses and mixing in the context of flavor models with A(4) symmetry, three scalar doublets in the triplet representation, and three lepton families. We show that there is no representation assignment that yields a dimension-5 mass operator consistent with experiment. We then consider a type-I seesaw with three heavy right-handed neutrinos, explaining in detail why it fails, and allowing us to show that agreement with the present neutrino oscillation data can be recovered with the inclusion of dimension-3 heavy neutrino mass terms that break softly the A(4) symmetry.
Address [Felipe, R. Gonzalez; Silva, Joao P.] Inst Super Engn Lisboa, P-1959007 Lisbon, Portugal, Email: ricardo.felipe@ist.utl.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000321737600009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1499
Permanent link to this record
 

 
Author Ternes, C.A.; Gariazzo, S.; Hajjar, R.; Mena, O.; Sorel, M.; Tortola, M.
Title (down) Neutrino mass ordering at DUNE: An extra nu bonus Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 9 Pages 093004 - 10pp
Keywords
Abstract We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being operational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti) neutrinos travel, provide ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through Earth. Crucially, muon capture by argon provides excellent charge tagging, allowing us to disentangle the neutrino and antineutrino signature. This is an important extra benefit of having a liquid argon time projection chamber as a far detector, that could render an similar to 3.5 sigma extraction of the mass ordering after approximately 7 yr of exposure.
Address [Ternes, Christoph A.; Gariazzo, Stefano; Hajjar, Rasmi; Mena, Olga; Sorel, Michel; Tortola, Mariam] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: chternes@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000498060600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4205
Permanent link to this record
 

 
Author Krauss, M.B.; Ota, T.; Porod, W.; Winter, W.
Title (down) Neutrino mass from higher than d=5 effective operators in supersymmetry, and its test at the LHC Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 11 Pages 115023 - 14pp
Keywords
Abstract We discuss neutrino masses from higher than d = 5 effective operators in a supersymmetric framework, where we explicitly demonstrate which operators could be the leading contribution to neutrino mass in the minimal supersymmetric standard model and next to minimal supersymmetric standard model. As an example, we focus on the d = 7 operator LLH(u)H(u)H(d)H(u), for which we systematically derive all tree-level decompositions. We argue that many of these lead to a linear or inverse seesaw scenario with two extra neutral fermions, where the lepton number violating term is naturally suppressed by a heavy mass scale when the extra mediators are integrated out. We choose one example, for which we discuss possible implementations of the neutrino flavor structure. In addition, we show that the heavy mediators, in this case SU(2) doublet fermions, may indeed be observable at the LHC, since they can be produced by Drell-Yan processes and lead to displaced vertices when they decay. However, the direct observation of lepton number violating processes is on the edge at LHC.
Address [Krauss, Martin B.; Porod, Werner; Winter, Walter] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: martin.krauss@physik.uni-wuerzburg.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000298642900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 856
Permanent link to this record
 

 
Author Bonilla, C.; Romao, J.C.; Valle, J.W.F.
Title (down) Neutrino mass and invisible Higgs decays at the LHC Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 11 Pages 113015 - 7pp
Keywords
Abstract The discovery of the Higgs boson suggests that neutrinos also get their mass from spontaneous symmetry breaking. In the simplest ungauged lepton-number scheme, the Standard Model Higgs now has two other partners: a massive CP-even scalar, and the massless Nambu-Goldstone boson, called the Majoron. For weak-scale breaking of lepton number the invisible decays of the CP-even Higgs bosons to the Majoron lead to potentially copious sources of events with large missing energy. Using LHC results, we study how the constraints on invisible decays of the Higgs boson restrict the relevant parameters, substantially extending those previously derived from LEP and potentially shedding light on the scale of spontaneous lepton-number violation.
Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000356928900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2285
Permanent link to this record