toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carames, T.F.; Fontoura, C.E.; Krein, G.; Vijande, J.; Valcarce, A. url  doi
openurl 
  Title (down) Charmed baryons in nuclear matter Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 11 Pages 114019 - 9pp  
  Keywords  
  Abstract We study the temperature and baryon density dependence of the masses of the lightest charmed baryons Lambda(c), Sigma(c) and Sigma(c)*. We also look at the effects of the temperature and baryon density on the binding energies of the Lambda N-c and Lambda(c)Lambda(c) systems. Baryon masses and baryon-baryon interactions are evaluated within a chiral constituent quark model. Medium effects are incorporated in those parameters of the model related to the dynamical breaking of chiral symmetry, which are the masses of the constituent quarks, the sigma and pi meson masses, and quark-meson couplings. We find that while the in-medium Lambda(c) mass decreases monotonically with temperature, those of Sigma(c) and Sigma(c)* have a nonmonotonic dependence. These features can be understood in terms of a simple group theory analysis regarding the one-gluon exchange interaction in those hadrons. The in-medium Lambda N-c and Lambda(c)Lambda(c) interactions are governed by a delicate balance involving a stronger attraction due to the decrease of the sigma meson mass, suppression of coupled-channel effects and lower thresholds, leading to shallow bound states with binding energies of a few MeV. The Lambda(c) baryon could possibly be bound to a large nucleus, in qualitative agreement with results based on relativistic mean field models or QCD sum rules. Ongoing experiments at RHIC or LHCb or the planned ones at FAIR and J-PARC may take advantage of the present results.  
  Address [Carames, T. F.; Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: carames@usal.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454167100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3854  
Permanent link to this record
 

 
Author Fernandez-Carames, T.; Valcarce, A.; Vijande, J. doi  openurl
  Title (down) Charged charmonium molecules Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 5 Pages 054032 - 5pp  
  Keywords  
  Abstract We make use of a self-consistent quark-model based study of four-quark charmonium-like states to interpret recent charmonium experimental data. We conclude that there exists a D*(D) over bar* meson-meson molecule with quantum numbers (I-G) J(PC) = (1(-))2(++). Our study confirms the presence of charged charmonium-like resonances on the excited charmonium spectrum. We find support from recent experimental data by the Belle Collaboration [R. Mizuk et al. (Belle Collaboration), Phys. Rev. D 78, 072004 (2008)]. Confirmation of the experimental data by the Belle Collaboration and the determination of the quantum numbers of the new structures would help in discriminating among different theoretical models and would give further support to the theoretical analysis of T. Fernandez-Carames, A. Valcarce, and J. Vijande [Phys. Rev. Lett. 103, 222001 (2009)].  
  Address [Carames, T. F.; Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282271100006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 366  
Permanent link to this record
 

 
Author Quintero-Quintero, A.; Patiño-Camargo, G.; Soriano, A.; Palma, J.D.; Vilar-Palop, J.; Pujades, M.C.; Llorca-Domaica, N.; Ballester, F.; Vijande, J.; Candela-Juan, C. doi  openurl
  Title (down) Calibration of a thermoluminescent dosimeter worn over lead aprons in fluoroscopy guided procedures Type Journal Article
  Year 2018 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 38 Issue 2 Pages 549-563  
  Keywords backscatter correction factor; TLD; lead apron; fluoroscopy; eye lens dose  
  Abstract Fluoroscopy guided interventional procedures provide remarkable benefits to patients. However, medical staff working near the scattered radiation field may be exposed to high cumulative equivalent doses, thus requiring shielding devices such as lead aprons and thyroid collars. In this situation, it remains an acceptable practice to derive equivalent doses to the eye lenses or other unprotected soft tissues with a dosimeter placed above these protective devices. Nevertheless, the radiation backscattered by the lead shield differs from that generated during dosimeter calibration with a water phantom. In this study, a passive personal thermoluminescent dosimeter (TLD) was modelled by means of the Monte Carlo (MC) code Penelope. The results obtained were validated against measurements performed in reference conditions in a secondary standard dosimetry laboratory. Next, the MC model was used to evaluate the backscatter correction factor needed for the case where the dosimeter is worn over a lead shield to estimate the personal equivalent dose H-p(0.07) to unprotected soft tissues. For this purpose, the TLD was irradiated over a water slab phantom with a photon beam representative of the result of a fluoroscopy beam scattered by a patient. Incident beam angles of 0 degrees and 60 degrees, and lead thicknesses between the TLD and phantom of 0.25 and 0.5 mm Pb were considered. A backscatter correction factor of 1.23 (independent of lead thickness) was calculated comparing the results with those faced in reference conditions (i.e., without lead shield and with an angular incidence of 0 degrees). The corrected dose algorithm was validated in laboratory conditions with dosi-meters irradiated over a thyroid collar and angular incidences of 0 degrees, 40 degrees and 60 degrees, as well as with dosimeters worn by interventional radiologists and cardiologists. The corrected dose algorithm provides a better approach to estimate the equivalent dose to unprotected soft tissues such as eye lenses. Dosimeters that are not shielded from backscatter radiation might underestimate personal equivalent doses when worn over a lead apron and, therefore, should be specifically characterized for this purpose.  
  Address [Quintero-Quintero, A.; Patino-Camargo, G.] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Valencia, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428913900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3552  
Permanent link to this record
 

 
Author Oliver, S.; Gimenez-Alventosa, V.; Berumen, F.; Gimenez, V.; Beaulieu, L.; Ballester, F.; Vijande, J. doi  openurl
  Title (down) Benchmark of the PenRed Monte Carlo framework for HDR brachytherapy Type Journal Article
  Year 2023 Publication Zeitschrift für Medizinische Physik Abbreviated Journal Z. Med. Phys.  
  Volume 33 Issue 4 Pages 511-528  
  Keywords Monte Carlo; PenRed; Brachytherapy; DICOM; Medical physics  
  Abstract Purpose: The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. Methods and materials: Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. Results: The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (K). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within +/- 1%(+/- 0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within +/- 1%(+/- 0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within +/- 0.2%for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differ-ences. Dose-volume histograms were in agreement with the reference data.Conclusions: PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.  
  Address [Oliver, S.] Univ Politecn Valencia, Inst Segur Ind, Radiofis & Medioambiental ISIRYM, Camide Vera s n, Valencia 46022, Spain, Email: sanolgi@upvnet.upv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0939-3889 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001137118400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5885  
Permanent link to this record
 

 
Author Candela-Juan, C.; Ballester, F.; Perez-Calatayud, J.; Vijande, J. url  openurl
  Title (down) Assaying multiple I-125 seeds with the well-ionization chamber SourceCheck(4 Pi) 33005 and a new insert Type Journal Article
  Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy  
  Volume 7 Issue 6 Pages 492-496  
  Keywords brachytherapy; insert; quality assurance; prostate; seeds; well chamber  
  Abstract Purpose: To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck(4 Pi) 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten I-125 seeds with one single measurement instead of measuring each seed individually. Material and methods: The material required is: a) the SourceCheck(4 Pi) 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S-K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S-K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds.The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S-K. The proposed method is validated by comparing the mean S-K of the ten seeds obtained from the new insert with the individual measurement of S-K of each seed, evaluated with the PTW insert. Results: The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck(4 Pi) 33005 is 1.135 +/- 0.007 (k = 1). The mean S-K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S-K of each seed. Conclusions: The new insert and procedure allow evaluating the mean S-K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S-K of each seed.  
  Address [Candela-Juan, Cristian; Perez-Calatayud, Jose] La Fe Univ, Dept Radiat Oncol, Phys Sect, E-46026 Valencia, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Termedia Publishing House Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1689-832x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368381300010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2533  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva