toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Felkl, T.; Herrero-Garcia, J.; Schmidt, M.A. url  doi
openurl 
  Title (down) The singly-charged scalar singlet as the origin of neutrino masses Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 122 - 39pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.  
  Address [Felkl, Tobias; Schmidt, Michael A.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: t.felkl@unsw.edu.au;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000656967200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4851  
Permanent link to this record
 

 
Author Caputo, A.; Hernandez, P.; Lopez-Pavon, J.; Salvado, J. url  doi
openurl 
  Title (down) The seesaw portal in testable models of neutrino masses Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 112 - 20pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, d = 5, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two displaced vertices. We estimate the LHC reach to this process.  
  Address [Caputo, A.; Hernandez, P.; Salvado, J.] Univ Valencia, Inst Fis Corpusc, Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: andrea.caputo@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404625300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3196  
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.; Mele, B. url  doi
openurl 
  Title (down) The see-saw portal at future Higgs Factories Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 117 - 32pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Lambda. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Lambda similar or equal to 500-1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.  
  Address [Barducci, Daniele] Univ Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000629645800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4766  
Permanent link to this record
 

 
Author Beniwal, A.; Herrero-Garcia, J.; Leerdam, N.; White, M.; Williams, A.G. url  doi
openurl 
  Title (down) The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 136 - 34pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract The Scotogenic Model is one of the most minimal models to account for both neutrino masses and dark matter (DM). In this model, neutrino masses are generated at the one-loop level, and in principle, both the lightest fermion singlet and the lightest neutral component of the scalar doublet can be viable DM candidates. However, the correct DM relic abundance can only be obtained in somewhat small regions of the parameter space, as there are strong constraints stemming from lepton flavour violation, neutrino masses, electroweak precision tests and direct detection. For the case of scalar DM, a sufficiently large lepton-number-violating coupling is required, whereas for fermionic DM, coannihilations are typically necessary. In this work, we study how the new scalar singlet modifies the phenomenology of the Scotogenic Model, particularly in the case of scalar DM. We find that the new singlet modifies both the phenomenology of neutrino masses and scalar DM, and opens up a large portion of the parameter space of the original model.  
  Address [Beniwal, Ankit] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain La Neuve, Belgium, Email: ankit.beniwal@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000668611300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4881  
Permanent link to this record
 

 
Author Mandal, R.; Murgui, C.; Peñuelas, A.; Pich, A. url  doi
openurl 
  Title (down) The role of right-handed neutrinos in b -> c tau nubar anomalies Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 022 - 46pp  
  Keywords Phenomenology of Field Theories in Higher Dimensions  
  Abstract Motivated by the persistent anomalies reported in the b -> c tau v<overbar></mml:mover> data, we perform a general model-independent analysis of these transitions, in the presence of light right-handed neutrinos. We adopt an effective field theory approach and write a low-energy effective Hamiltonian, including all possible dimension-six operators. The corresponding Wilson coefficients are determined through a numerical fit to all available experimental data. In order to work with a manageable set of free parameters, we define eleven well- motivated scenarios, characterized by the different types of new physics that could mediate these transitions, and analyse which options seem to be preferred by the current measurements. The data exhibit a clear preference for new-physics contributions, and good fits to the data are obtained in several cases. However, the current measurement of the longitudinal D<SUP></SUP> polarization in B -> D tau v<overbar></mml:mover> cannot be easily accommodated within its experimental 1 sigma range. A general analysis of the three-body B -> D tau v<overbar></mml:mover> and four-body B -> D<mml:mo><mml:mfenced close=“)” open=“(”><mml:mo>-> D pi</mml:mfenced>tau <mml:mover accent=“true”>v<mml:mo stretchy=“true”><overbar></mml:mover> angular distributions is also presented. The accessible angular observables are studied in order to assess their sensitivity to the different new physics scenarios. Experimental information on these distributions would help to disentangle the dynamical origin of the current anomalies.  
  Address [Mandal, Rusa] Univ Siegen, Theoret Phys 1, Nat Wissensch Tech Fak, D-57068 Siegen, Germany, Email: Rusa.Mandal@uni-siegen.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561056000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4506  
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title (down) The role of right-handed neutrinos in b -> c tau (pi nu(tau), rho nu(tau), mu(nu)over-bar(mu)nu(tau))(nu)over-bar(tau) from visible final-state kinematics Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 122 - 45pp  
  Keywords Beyond Standard Model; CP violation  
  Abstract In the context of lepton flavor universality violation (LFUV) studies, we fully derive a general tensor formalism to investigate the role that left- and right-handed neutrino new-physics (NP) terms may have in b -> c tau(nu) over bar (tau) transitions. We present, for several extensions of the Standard Model (SM), numerical results for the Lambda(b) -> Lambda(c)tau(nu) over bar (tau) semileptonic decay, which is expected to be measured with precision at the LHCb. This reaction can be a new source of experimental information that can help to confirm, or maybe rule out, LFUV presently seen in (B) over bar meson decays. The present study analyzes observables that can help in distinguishing between different NP scenarios that otherwise provide very similar results for the branching ratios, which are our currently best hints for LFUV. Since the tau lepton is very short-lived, we consider three subsequent tau-decay modes, two hadronic pi nu(tau) and rho nu(tau) and one leptonic mu(nu) over bar (mu)nu(tau), which have been previously studied for (B) over bar -> D(*) decays. Within the tensor formalism that we have developed in previous works, we re-obtain the expressions for the differential decay width written in terms of visible (experimentally accessible) variables of the massive particle created in the tau decay. There are seven different tau angular and spin asymmetries that are defined in this way and that can be extracted from experiment. Those asymmetries provide observables that can help in constraining possible SM extensions.  
  Address [Penalva, Neus; Nieves, Juan] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: neus.penalva@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000708483600004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5005  
Permanent link to this record
 

 
Author Fileviez Perez, P.; Murgui, C.; Plascencia, A.D. url  doi
openurl 
  Title (down) The QCD axion and unification Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 093 - 21pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT  
  Abstract The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the Peccei-Quinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range ma, <^> (3-13) x 10-9 eV. We study the axion phenomenology and find that the ABRACADABRA and CASPEr-Electric experiments will be able to fully probe this mass window.  
  Address [Perez, Pavel Fileviez; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000514868300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4296  
Permanent link to this record
 

 
Author Panotopoulos, G.; Tuzon, P. url  doi
openurl 
  Title (down) The physics of a new gauge boson in a Stueckelberg extension of the two-Higgs-doublet model Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 039  
  Keywords  
  Abstract String theory constructions using D-brane physics offer a framework where ingredients like extra abelian factors in the gauge group, more than one Higgs doublet and a generalized Green-Schwarz mechanism appear at the same time. Motivated by works towards the direction of obtaining the Standard Model in orientifold constructions, we study in the present work a Stueckelberg extension of the two-Higgs-doublet model. The distinctive features of our model are i) a sharp decay width for the heavy gauge boson, and ii) a charged Higgs boson having two main decay channels at tree level with equal branching ratios.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293741400039 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 763  
Permanent link to this record
 

 
Author Emmanuel-Costa, D.; Simoes, C.; Tortola, M. url  doi
openurl 
  Title (down) The minimal adjoint-SU (5) x Z(4) GUT model Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 054 - 30pp  
  Keywords Neutrino Physics; GUT; Discrete and Finite Symmetries  
  Abstract An extension of the adjoint SU (5) model with a flavour symmetry based on the Z(4) group is investigated. The Z(4) symmetry is introduced with the aim of leading the up-and down-quark mass matrices to the Nearest-Neighbour-Interaction form. As a consequence of the discrete symmetry embedded in the SU (5) gauge group, the charged lepton mass matrix also gets the same form. Within this model, light neutrinos get their masses through type-I, type-III and one-loop radiative seesaw mechanisms, implemented, respectively, via a singlet, a triplet and an octet from the adjoint fermionic 24 fields. It is demonstrated that the neutrino phenomenology forces the introduction of at least three 24 fermionic multiplets. The symmetry SU (5) x Z(4) allows only two viable zero textures for the effective neutrino mass matrix. It is showed that one texture is only compatible with normal hierarchy and the other with inverted hierarchy in the light neutrino mass spectrum. Finally, it is also demonstrated that Z(4) freezes out the possibility of proton decay through exchange of coloured Higgs triplets at tree-level.  
  Address [Emmanuel-Costa, D.; Simoes, C.] Univ Lisbon, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: david.costa@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325495200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1604  
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T. url  doi
openurl 
  Title (down) The minimal 3+2 neutrino model versus oscillation anomalies Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 161 - 20pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard 3 nu model and similarly to the 3 + 2 phenomenological models, even though the number of free parameters is much smaller than in the latter. Accounting for the anomalies in the minimal model favours a normal hierarchy of the light states and requires a large reactor angle, in agreement with recent measurements. Our analysis of the model employs a new parametrization of seesaw models that extends the Casas-Ibarra one to regimes where higher order corrections in the light-heavy mixings are significant.  
  Address [Donini, A.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: andrea.donini@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307299800039 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1161  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva