|   | 
Details
   web
Records
Author Boronat, M.; Marinas, C.; Frey, A.; Garcia, I.; Schwenker, B.; Vos, M.; Wilk, F.
Title (down) Physical Limitations to the Spatial Resolution of Solid-State Detectors Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 1 Pages 381-386
Keywords Charged particle tracking; silicon detectors; solid state devices
Abstract In this paper we explore the effect of delta-ray emission and fluctuations in the signal deposition on the detection of charged particles in silicon-based detectors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.
Address [Boronat, M.; Garcia, I.; Vos, M.] IFIC UVEG CSIC, E-46980 Valencia, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000349672900025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2140
Permanent link to this record
 

 
Author Wieduwilt, P.; Paschen, B.; Schreeck, H.; Schwenker, B.; Soltau, J.; Ahlburg, P.; Dingfelder, J.; Frey, A.; Gomis, P.; Lutticke, F.; Marinas, C.
Title (down) Performance of production modules of the Belle II pixel detector in a high-energy particle beam Type Journal Article
Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 991 Issue Pages 164978 - 15pp
Keywords DEPFET; DESY testbeam; Pixel detector; Belle II; Vertex detector
Abstract The Belle II experiment at the Super B factory SuperKEKB, an asymmetric e(+) e(-) collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the gamma (4S) resonance of m(gamma(4S)) = 10.58 GeV. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only 75 μm. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.
Address [Paschen, B.; Ahlburg, P.; Dingfelder, J.; Luetticke, F.] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany, Email: philipp.wieduwilt@phys.uni-goettingen.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000686054900010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4941
Permanent link to this record
 

 
Author Belle-II DEPFET and PXD Collaborations (Wang, B. et al); Marinas, C.
Title (down) Operational experience of the Belle II pixel detector Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1032 Issue Pages 166631 - 7pp
Keywords Belle II PXD; DEPFET; Pixel detector; Vertex detector
Abstract The Belle II experiment at the SuperKEKB accelerator has started its physics data taking with the full detector setup in March 2019. It aims to collect 40 times more e+e- collision data compared with its predecessor Belle experiment. The Belle II pixel detector (PXD) is based on the Depleted P-channel Field Effect Transistor (DEPFET) technology. The PXD plays an important role in the tracking and vertexing of the Belle II detector. Its two layers are arranged at radii of 14 mm and 22 mm around the interaction point. The sensors are thinned down to 75 μm to minimize multiple scattering, and each module has interconnects and ASICs integrated on the sensor with silicon frames for mechanical support. PXD showed good performance during data taking. It also faces several operational challenges due to the high background level from the SuperKEKB accelerator, such as the damage from beam loss events, the drift in the HV working point due to radiation effect, and the impact of the high background.
Address [Alonso, O.; Dieguez, A.] Univ Barcelona, C Marti Franques 1, Barcelona 08028, Spain, Email: wang@mpp.mpg.de
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000793768200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5227
Permanent link to this record
 

 
Author Liptak, Z. et al; Marinas, C.
Title (down) Measurements of beam backgrounds in SuperKEKB Phase 2 Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1040 Issue Pages 167168 - 19pp
Keywords
Abstract The high design luminosity of the SuperKEKB electron–positron collider will result in challenging levels of beam-induced backgrounds in the interaction region. Understanding and mitigating these backgrounds is critical to the success of the Belle II experiment. We report on the first background measurements performed after roll-in of the Belle II detector, a period known as SuperKEKB Phase 2, utilizing both the BEAST II system of dedicated background detectors and the Belle II detector itself. We also report on first revisions to the background simulation made in response to our findings. Backgrounds measured include contributions from synchrotron radiation, beam-gas, Touschek, and injection backgrounds. At the end of Phase 2, single-beam backgrounds originating from the 4 GeV positron Low Energy Ring (LER) agree reasonably well with simulation, while backgrounds from the 7 GeV electron High Energy Ring (HER) are approximately one order of magnitude higher than simulation. We extrapolate these backgrounds forward and conclude it is safe to install the Belle II vertex detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5496
Permanent link to this record
 

 
Author Belle II Collaboration (Abudinen, F. et al); Gomis, P.; Marinas, C.
Title (down) Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 2 Pages 021001 - 12pp
Keywords luminosity; Bhabha; digamma; Belle II
Abstract From April to July 2018, a data sample at the peak energy of the resonance was collected with the Belle II detector at the SuperKEKB electron-positron collider. This is the first data sample of the Belle II experiment. Using Bhabha and digamma events, we measure the integrated luminosity of the data sample to be (, where the first uncertainty is statistical and the second is systematic. This work provides a basis for future luminosity measurements at Belle II.
Address [Jia, S.; Li, S. X.; Zhou, X. Y.] Beihang Univ, Beijing 100191, Peoples R China
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000509919700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4270
Permanent link to this record