|   | 
Details
   web
Records
Author Garcia Soto, A.; Garg, D.; Reno, M.H.; Arguelles, C.A.
Title (down) Probing quantum gravity with elastic interactions of ultrahigh-energy neutrinos Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 033009 - 9pp
Keywords
Abstract The next generation of radio telescopes will be sensitive to low-scale quantum gravity by measuring ultrahigh-energy neutrinos. In this work, we demonstrate for the first time that neutrino-nucleon soft interactions induced by TeV-scale gravity would significantly increase the number of events detected by the IceCube-Gen2 radio array in the EeV regime. However, we show that these experiments cannot measure the total cross section using only the angular and energy information of the neutrino flux, unless assumptions on the underlying inelasticity distribution of neutral interactions are made.
Address [Garcia-Soto, A.; Arguelles, C. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001004183600015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5557
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aitllo, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title (down) Probing invisible neutrino decay with KM3NeT/ORCA Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 090 - 30pp
Keywords Beyond Standard Model; Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state v3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/alpha 3 = T3/m3 < 180 ps/eV at 90% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for theta(23), Delta m(31)(2) and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: victor.carretero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992450100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5564
Permanent link to this record
 

 
Author Wilkinson, C.; Garcia Soto, A.
Title (down) Low-ν method with LHC neutrinos Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 3 Pages 033010 - 19pp
Keywords
Abstract The Forward Physics Facility (FPF) plans to use neutrinos produced at the Large Hadron Collider to make a variety of measurements at previously unexplored TeV energies. Its primary goals include precision measurements of the neutrino cross section and using the measured neutrino flux both to uncover information about far-forward hadron production and to search for various beyond standard model scenarios. However, these goals have the potential to conflict: Extracting information about the flux or cross section relies upon an assumption about the other. In this paper, we demonstrate that the FPF can use the low-nu method-a technique for constraining the flux shape by isolating neutrino interactions with low energy transfer to the nucleus-to break this degeneracy. We show that the low-nu method is effective for extracting the nu μflux shape, in a model-independent way. We discuss its application for extracting the nu over bar μflux shape but find that this is significantly more model dependent. Finally, we explore the precision to which the nu μflux shape could be constrained at the FPF for a variety of proposed detector options. We find that the precision would be sufficient to discriminate between various realistic flux models.
Address [Wilkinson, C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: cwilkinson@lbl.gov;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001183228500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5986
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J. J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J. D.; Zuñiga, J.
Title (down) KM3NeT broadcast optical data transport system Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 2 Pages T02001 - 22pp
Keywords Cherenkov detectors; Data Processing; Large detector systems for particle and astroparticle physics; Optics
Abstract The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000989217700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5565
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title (down) Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 4 Pages 317 - 16pp
Keywords
Abstract The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV-PeV neutrinos. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: lincetto@astro.ruhr-uni-bochum.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000780973500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5197
Permanent link to this record