|   | 
Details
   web
Records
Author PANDA Collaboration (Davi, F. et al); Diaz, J.
Title (down) Technical design report for the endcap disc DIRC Type Journal Article
Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 49 Issue 12 Pages 120501 - 128pp
Keywords technical design report; particle identification; Cherenkov detector; PANDA
Abstract PANDA (anti-proton annihiliation at Darmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2 x 10(32) cm(-2) s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5 degrees to 22 degrees and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA disc DIRC detector that has not been used in any other high energy physics experiment before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees sufficient safety margins.
Address [Davi, F.] Univ Politecn Marche Ancona, Ancona, Italy, Email: muschmidt@uni-wuppertal.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000928188400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5476
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J.
Title (down) Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 46 Issue 4 Pages 045001 - 155pp
Keywords particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics
Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.
Address [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000460153900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3930
Permanent link to this record
 

 
Author HADES Collaboration (Agakishiev, G. et al); Diaz, J.; Gil, A.
Title (down) Study of the quasi-free np -> np pi(+)pi(-) reaction with a deuterium beam at 1.25 GeV/nucleon Type Journal Article
Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 750 Issue Pages 184-193
Keywords Two-pion production; np collisions; Resonance excitations
Abstract The tagged quasi-free np -> np pi(+)pi(-) reaction has been studied experimentally with the High Acceptance Di-Electron Spectrometer (HADES) at GSI at a deuteron incident beam energy of 1.25 GeV/nucleon (root S similar to 2.42 GeV/c for the quasi-free collision). For the first time, differential distributions of solid statistics for pi(+)pi(-) production in np collisions have been collected in the region corresponding to the large transverse momenta of the secondary particles. The invariant mass and angular distributions for the np -> np pi(+)pi(-) reaction are compared with different models. This comparison confirms the dominance of the t-channel with Delta Delta contribution. It also validates the changes previously introduced in the Valencia model to describe two-pion production data in other isospin channels, although some deviations are observed, especially for the pi(+)pi(-) invariant mass spectrum. The extracted total cross section is also in much better agreement with this model. Our new measurement puts useful constraints for the existence of the conjectured dibaryon resonance at mass M similar to 2.38 GeV and with width Gamma similar to 70 MeV. (C) 2015 The Authors. Published by Elsevier B.V.
Address [Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95125 Catania, Italy, Email: akurilkin@jinr.ru;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000364250600031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2469
Permanent link to this record
 

 
Author NEXT Collaboration (Trindade, A.M.F. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N.
Title (down) Study of the loss of xenon scintillation in xenon-trimethylamine mixtures Type Journal Article
Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 905 Issue Pages 22-28
Keywords Gaseous radiation detectors; Noble gas mixtures; Molecular additives; VUV absorption
Abstract This work investigates the capability of TMA ((CH3)(3)N) molecules to shift the wavelength of Xe VUV emission (160-188 nm) to a longer, more manageable, wavelength (260-350 nm). Light emitted from a Xe lamp was passed through a gas chamber filled with Xe-TMA mixtures at 800 Torr and detected with a photomultiplier tube. Using bandpass filters in the proper transmission ranges, no reemitted light was observed experimentally. Considering the detection limit of the experimental system, if reemission by TMA molecules occurs, it is below 0.3% of the scintillation absorbed in the 160-188 nm range. An absorption coefficient value for xenon VUV light by TMA of 0.43 +/- 0.03 cm(-1) Torr(-1) was also obtained. These results can be especially important for experiments considering TMA as a molecular additive to Xe in large volume optical time projection chambers.
Address [Trindade, A. M. F.; Escada, J.; Cortez, A. F., V; Borges, F. I. G. M.; Santos, F. P.; Conde, C. A. N.] LIP Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: Kalexandre.trindade@coimbra.lip.pt
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000444425700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3730
Permanent link to this record
 

 
Author PANDA Collaboration (Singh, B. et al); Diaz, J.
Title (down) Study of doubly strange systems using stored antiprotons Type Journal Article
Year 2016 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 954 Issue Pages 323-340
Keywords Strangeness; Hypemuclei; Hyperatoms; Antiprotons
Abstract Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Xi(-) -atoms will be feasible and even the production of Omega(-) -atoms will be within reach. The latter might open the door to the vertical bar S vertical bar = 3 world in strangeness nuclear physics, by the study of the hadronic Omega(-) -nucleus interaction. For the first time it will be possible to study the behavior of Xi(+) in nuclear systems under well controlled conditions.
Address [Singh, B.] Aligarth Muslim Univ, Dept Phys, Aligarh, India, Email: pochodza@kph.uni-mainz.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000381331200021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2790
Permanent link to this record