|   | 
Details
   web
Records
Author Perez, A.
Title (down) Information encoding of a qubit into a multilevel environment Type Journal Article
Year 2010 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 81 Issue 5 Pages 052326 - 6pp
Keywords
Abstract I consider the interaction of a small quantum system (a qubit) with a structured environment consisting of many levels. The qubit will experience a decoherence process, which implies that part of its initial information will be encoded into correlations between system and environment. I investigate how this information is distributed on a given subset of levels as a function of its size, using the mutual information between both entities, in the spirit of the partial-information plots studied by Zurek and co-workers. In this case we can observe some differences, which arise from the fact that I am partitioning just one quantum system and not a collection of them. However, some similar features, like redundancy (in the sense that a given amount of information is shared by many subsets), which increases with the size of the environment, are also found here.
Address [Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947 ISBN Medium
Area Expedition Conference
Notes ISI:000278140000064 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 445
Permanent link to this record
 

 
Author Vnuchenko, A.; Esperante Pereira, D.; Gimeno, B.; Benedetti, S.; Catalan Lasheras, N.; Garlasch, M.; Grudiev, A.; McMonagle, G.; Pitman, S.; Syratchev, I.; Timmins, M.; Wegner, R.; Woolley, B.; Wuensch, W.; Faus-Golfe, A.
Title (down) High-gradient testing of an S-band, normal-conducting low phase velocity accelerating structure Type Journal Article
Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 23 Issue 8 Pages 084801 - 13pp
Keywords
Abstract A novel high-gradient accelerating structure with low phase velocity, v/c = 0.38, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC 100 MV/m high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward traveling wave (BTW) with a phase advance of 150 degrees and has an active length of 19 cm. The main objective for designing and testing this structure was to demonstrate that low velocity particles, in particular protons, can be accelerated with high gradients. In addition, the performance of this structure compared to other type of structures provides insights into the factors that limit high gradient operation. The structure was conditioned successfully to high gradient using the same protocol as for CLIC X-band structures. However, after the high power test, data analysis realized that the structure had been installed backwards, that is, the input power had been fed into what is nominally the output end of the structure. This resulted in higher peak fields at the power feed end and a steeply decreasing field profile along the structure, rather than the intended near constant field and gradient profile. A local accelerating gradient of 81 MV/m near the input end was achieved at a pulse length of 1.2 μs and with a breakdown rate (BDR) of 7.2 x 10(-7) 1 /pulse/m. The reverse configuration was accidental but the operating with this field condition gave very important insights into high-gradient behaviour and a comprehensive analysis has been carried out. A particular attention was paid to the characterization of the distribution of BD positions along the structure and within a cell.
Address [Vnuchenko, A.; Esperante Pereira, D.; Gimeno Martinez, B.] Inst Fsica Corpuscular IFIC, Valencia 46980, Spain, Email: anna.vnuchenko@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9888 ISBN Medium
Area Expedition Conference
Notes WOS:000582958800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4584
Permanent link to this record
 

 
Author Woolley, B.; Burt, G.; Dexter, A.C.; Peacock, R.; Millar, W.L.; Catalan Lasheras, N.; Degiovanni, A.; Grudiev, A.; Mcmonagle, G.; Syratchev, I.; Wuensch, W.; Rodriguez Castro, E.; Giner Navarro, J.
Title (down) High-gradient behavior of a dipole-mode rf structure Type Journal Article
Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 23 Issue 12 Pages 122002 - 11pp
Keywords
Abstract A normal-conducting, X-band traveling wave structure operating in the dipole mode has been systematically high-gradient tested to gain insight into the maximum possible gradients in these types of structure. Measured structure conditioning, breakdown behavior, and achieved surface fields are reported as well as a postmortem analysis of the breakdown position and a scanning electron microscope analysis of the high-field surfaces. The results of these measurements are then compared to high-gradient results from monopole-mode cavities. Scaled to a breakdown rate of 10(-6), the cavities were found to operate at a peak electric field of 154 MV/m and a peak modified Poynting vector S-c of 5.48 MW/mm(2). The study provides important input for the further development of dipole-mode cavities for use in the Compact Linear Collider as a crab cavity and dipole-mode cavities for use in x-ray free-electron lasers as well as for studies of the fundamental processes in vacuum arcs. Of particular relevance are the unique field patterns in dipole cavities compared to monopole cavities, where the electric and magnetic fields peak in orthogonal planes, which allow the separation of the role of electric and magnetic fields in breakdown via postmortem damage observation. The azimuthal variation of breakdown crater density is measured and is fitted to sinusoidal functions. The best fit is a power law fit of exponent 6. This is significant, as it shows how breakdown probability varies over a surface area with a varying electric field after conditioning to a given peak field.
Address [Woolley, B.; Burt, G.; Dexter, A. C.; Peacock, R.; Millar, W. L.] Univ Lancaster, Lancaster LA1 4YW, England
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9888 ISBN Medium
Area Expedition Conference
Notes WOS:000614886300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4696
Permanent link to this record
 

 
Author Marquez-Martin, I.; Di Molfetta, G.; Perez, A.
Title (down) Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time Type Journal Article
Year 2017 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 95 Issue 4 Pages 042112 - 5pp
Keywords
Abstract We analyze the properties of a two-and three-dimensional quantum walk that are inspired by the idea of a brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983)]. In that model, particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the “ordinary” dimensions.
Address [Marquez-Martin, I.; Di Molfetta, G.; Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000399931500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3102
Permanent link to this record
 

 
Author Di Molfetta, G.; Soares-Pinto, D.O.; Duarte Queiros, S.M.
Title (down) Elephant quantum walk Type Journal Article
Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 97 Issue 6 Pages 062112 - 6pp
Keywords
Abstract We introduce an analytically treatable discrete time quantum walk in a one-dimensional lattice which combines non-Markovianity and hyperballistic diffusion associated with a Gaussian whose variance sigma(2)(t) grows cubicly with time sigma alpha t(3). These properties have have been numerically found in several systems, namely, tight-binding lattice models. For its rules, our model can be understood as the quantum version of the classical non-Markovian “elephant random walk” process for which the quantum coin operator only changes the value of the diffusion constant although, contrarily, to the classical coin.
Address [Di Molfetta, Giuseppe] Univ Toulon & Var, Aix Marseille Univ, Nat Computat Res Grp, CNRS,LIS, Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000435076800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3625
Permanent link to this record