|   | 
Details
   web
Records
Author NEXT Collaboration (Henriques, C.A.O. et al); Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title (down) Neutral Bremsstrahlung Emission in Xenon Unveiled Type Journal Article
Year 2022 Publication Physical Review X Abbreviated Journal Phys. Rev. X
Volume 12 Issue 2 Pages 021005 - 23pp
Keywords
Abstract We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about 10(-2) photon/e(-) cm(-1) bar(-1) at pressure-reduced electric field values of 50 V cm(-1) bar(-1) to above 3 x 10(-1) photon/e(-) cm(-1) bar(-1) at 500 V cm(-1) bar(-1). Above 1.5 kV cm(-1) bar(-1), values that are typically employed for electroluminescence, it is estimated that NBrS is present with an intensity around 1 photon/e(-) cm(-1) bar(-1), which is about 2 orders of magnitude lower than conventional, excimer-based electroluminescence. Despite being fainter than its excimeric counterpart, our calculations reveal that NBrS causes luminous backgrounds that can interfere, in either gas or liquid phase, with the ability to distinguish and/or to precisely measure low primary-scintillation signals (S1). In particular, we show this to be the case in the "buffer region, where keeping the electric field below the electroluminescence threshold does not suffice to extinguish secondary scintillation. The electric field leakage in this region should be mitigated to avoid intolerable levels of NBrS emission. Furthermore, we show that this new source of light emission opens up a viable path toward obtaining S2 signals for discrimination purposes in future single-phase liquid TPCs for neutrino and dark matter physics, with estimated yields up to 20-50 photons/e(-) cm(-1).
Address [Henriques, C. A. O.; Teixeira, J. M. R.; Monteiro, C. M. B.; Fernandes, A. F. M.; Fernandes, L. M. P.; Freitas, E. D. C.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, ILIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: henriques@uc.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2160-3308 ISBN Medium
Area Expedition Conference
Notes WOS:000792590100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5220
Permanent link to this record
 

 
Author NEXT Collaboration; Carcel, S.; Carrion, J.V.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title (down) Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 7 Pages 075001 - 17pp
Keywords gaseous detectors; scintillators; scintillation and light emission processes; solid; gas and liquid scintillators
Abstract Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
Address [Rogers, L.; Jones, B. J. P.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Byrnes, N.; Dingler, R.; McDonald, A. D.; Nygren, D. R.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: leslie.rogers@mavs.uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000537753800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4423
Permanent link to this record
 

 
Author NEXT Collaboration (Azevedo, C.D.R. et al); Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title (down) Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives Type Journal Article
Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 877 Issue Pages 157-172
Keywords Optical TPCs; Microscopic simulation; Xenon scintillation
Abstract We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.
Address [Azevedo, C. D. R.] Univ Aveiro, I3N, Phys Dept, Aveiro, Portugal, Email: Diego.Gonzalez.Diaz@usc.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000415128000022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3371
Permanent link to this record
 

 
Author BABAR Collaboration (Aubert, B. et al); Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.
Title (down) Measurements of Charged Current Lepton Universality and vertical bar V-us vertical bar Using Tau Lepton Decays to e(-)(nu)over-bar(e)nu(tau), mu(-)(nu)over-bar(mu)nu(tau), pi(-)nu(tau), and K-nu(tau) Type Journal Article
Year 2010 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 105 Issue 5 Pages 051602 - 8pp
Keywords
Abstract Using 467 fb(-1) of e(+)e(-) annihilation data collected with the BABAR detector, we measure B(tau(-)->mu(-)(nu) over bar (mu)nu(tau))/B(tau(-)-> e(-)(nu) over bar (e)nu(tau)) = (0.9796 +/- 0.0016 +/- 0.0036), B(tau(-)->pi(-)nu(tau))/B(tau(-)-> e(-)nu(e)nu(tau)) = (0.5945 +/- 0.0014 +/- 0.0061), and B(tau(-)-> K-nu(tau))/B(tau(-)-> e(-)nu(e)nu(tau)) = (0.03882 +/- 0.00032 +/- 0.00057), where the uncertainties are statistical and systematic, respectively. From these precision similar to measurements, we test the standard model assumption of μ- e and tau – μcharge current lepton universality and provide determinations of vertical bar V-us vertical bar experimentally independent of the decay of a kaon.
Address [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes ISI:000280472700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 402
Permanent link to this record
 

 
Author BABAR Collaboration (del Amo Sanchez, P. et al); Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.
Title (down) Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in B+ -> rho K-0*(+) and B+ -> f(0)(980)K*(+) decays Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 5 Pages 051101 - 8pp
Keywords
Abstract We present measurements of the branching fractions, longitudinal polarization, and direct CP-violation asymmetries for the decays B+ -> rho K-0*(+) and B+ -> f(0)(980)K*(+) with a sample of (467 +/- 5) x 10(6)B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at the SLAC National Accelerator Laboratory. We observe B+ -> rho K-0*(+) with a significance of 5: 3 sigma and measure the branching fraction B(B+ -> rho K-0*(+)) = (4.6 +/- 1.0 +/- 0.4) x 10(-6), the longitudinal polarization f(L) = 0.78 +/- 0.12 +/- 0.03, and the CP-violation asymmetry A(CP) = 0.31 +/- 0.13 +/- 0.03. We observe B+ -> f(0)(980)K*(+) and measure the branching fraction B(B+ -> f(0)(980)K*(+)) x B(f(0)(980) -> pi(+)pi(-)) = (4.2 +/- 0.6 +/- 0.3) x 10(-6) and the CP-violation asymmetry A(CP) = 0.15 +/- 0.12 +/- 0.03. The first uncertainty quoted is statistical and the second is systematic.
Address [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000288121000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 548
Permanent link to this record