toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title (down) HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron Type Journal Article
  Year 2020 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 896 Issue 2 Pages L29 - 9pp  
  Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Cosmic ray sources; Supernova remnants; Gamma-ray observatories  
  Abstract We present the detection of very-high-energy gamma-ray emission above 100 TeV from HAWC J2227+610 with the High-Altitude Water Cherenov Gamma-Ray Observatory (HAWC) observatory. Combining our observations with previously published results by the Very Energetic Radiation Imaging Telescope Array System (VERTIAS), we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.  
  Address [Albert, A.; Dingus, B. L.; Harding, J. P.; Malone, K.; Sinnis, G.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: hfleisch@mtu.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000542724600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4445  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title (down) HAWC and Fermi-LAT Detection of Extended Emission from the Unidentified Source 2HWC J2006+341 Type Journal Article
  Year 2020 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 903 Issue 1 Pages L14 - 6pp  
  Keywords Gamma-rays; Interstellar medium  
  Abstract The discovery of the TeV point source 2HWC J2006+341 was reported in the second HAWC gamma-ray catalog. We present a follow-up study of this source here. The TeV emission is best described by an extended source with a soft spectrum. At GeV energies, an extended source is significantly detected in Fermi-LAT data. The matching locations, sizes, and spectra suggest that both gamma-ray detections correspond to the same source. Different scenarios for the origin of the emission are considered and we rule out an association to the pulsar PSR J2004+3429 due to extreme energetics required, if located at a distance of 10.8 kpc.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: miguel.araya@ucr.ac.cr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000584890800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4591  
Permanent link to this record
 

 
Author Caputo, A.; Sberna, L.; Toubiana, A.; Babak, S.; Barausse, E.; Marsat, S.; Pani, P. url  doi
openurl 
  Title (down) Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart Type Journal Article
  Year 2020 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 892 Issue 2 Pages 90 - 13pp  
  Keywords  
  Abstract We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i).stellar-origin black-hole binaries.(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave (GW) observatories within weeks/months; and (ii) intermediate-mass black-hole binaries.(IMBHBs) in the LISA band only. Because of the large number of observable GW cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the GW phase at negative (-4) post-Newtonian order, being thus dominant for binaries at large separations. Accretion at the Eddington or at super-Eddington rate will leave a detectable imprint on the dynamics of SOBHBs. For super-Eddington rates and a 10 yr mission, a multiwavelength strategy with LISA and a ground-based interferometer can detect about 10 (a few) SOBHB events for which the accretion rate can be measured at 50% (10%) level. In all cases, the sky position can be identified within much less than 0.4 deg(2) uncertainty. Likewise, accretion at greater than or similar to 100% of the Eddington rate can be measured in IMBHBs up to redshift z approximate to 0.1, and the position of these sources can be identified within less than 0.01 deg(2) uncertainty. Altogether, a detection of SOBHBs or IMBHBs would allow for targeted searches of electromagnetic counterparts to black-hole mergers in gas-rich environments with future X-ray detectors (such as Athena) and/or radio observatories (such as SKA).  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000619108700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4709  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title (down) gamma-Ray Emission from Classical Nova V392 Per: Measurements from Fermi and HAWC Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 940 Issue 2 Pages 141 - 14pp  
  Keywords  
  Abstract This paper reports on the gamma-ray properties of the 2018 Galactic nova V392 Per, spanning photon energies similar to 0.1 GeV-100 TeV by combining observations from the Fermi Gamma-ray Space Telescope and the HAWC Observatory. As one of the most rapidly evolving gamma-ray signals yet observed for a nova, GeV gamma-rays with a power-law spectrum with an index Gamma = 2.0 +/- 0.1 were detected over 8 days following V392 Per's optical maximum. HAWC observations constrain the TeV gamma-ray signal during this time and also before and after. We observe no statistically significant evidence of TeV gamma-ray emission from V392 Per, but present flux limits. Tests disfavor the extension of the Fermi Large Area Telescope spectrum to energies above 5 TeV by 2 standard deviations (95%) or more. We fit V392 Per's GeV gamma-rays with hadronic acceleration models, incorporating optical observations, and compare the calculations with HAWC limits.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: linneman@msu.edu  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898877400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5444  
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F. url  doi
openurl 
  Title (down) Galactic Gamma-Ray Diffuse Emission at TeV Energies with HAWC Data Type Journal Article
  Year 2024 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 961 Issue 1 Pages 104 - 14pp  
  Keywords  
  Abstract Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays (CRs), ultra-relativistic protons, and electrons, interacting with gas and electromagnetic radiation fields in the interstellar medium. Here we present the analysis of teraelectronvolt diffuse emission from a region of the Galactic plane over the range in longitude of l is an element of[43 degrees, 73 degrees], using data collected with the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal, and latitudinal distributions of the teraelectronvolt diffuse emission are shown. The radiation spectrum is compatible with the spectrum of the emission arising from a CR population with an index similar to that of the observed CRs. When comparing with the DRAGON base model, the HAWC GDE flux is higher by about a factor of 2. Unresolved sources such as pulsar wind nebulae and teraelectronvolt halos could explain the excess emission. Finally, deviations of the Galactic CR flux from the locally measured CR flux may additionally explain the difference between the predicted and measured diffuse fluxes.  
  Address [Alfaro, R.; Rojas, D. Avila; Belmont-Moreno, E.; Espinoza, C.; Hernandez, S.; Leon Vargas, H.; Sandoval, A.; Serna-Franco, J.] Univ Nacl Autonoma Mexico, Inst Fis, Ciudad De Mexico, Mexico, Email: amid.nayerhoda@ifj.edu.pl  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001188034600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6022  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva