toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Garani, R.; Palomares-Ruiz, S. url  doi
openurl 
  Title (down) Evaporation of dark matter from celestial bodies Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 042 - 53pp  
  Keywords dark matter detectors; dark matter theory; massive stars; stars  
  Abstract Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that DM particles must have in order to remain trapped. DM particles below this mass are very likely to scatter to speeds higher than the escape velocity, so they would be kicked out of the capturing object and escape. Here, we compute the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium, spanning the mass range [10(-)(10) – 10(2)] M-circle dot, for constant scattering cross sections and s-wave annihilations. We illustrate the critical importance of the exponential tail of the evaporation rate, which has not always been appreciated in recent literature, and obtain a robust result: for the geometric value of the scattering cross section and for interactions with nucleons, at the local galactic position, the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium is approximately given by E-c/T-chi similar to 30, where E-c is the escape energy of DM particles at the core of the object and T-chi is their temperature. In that case, the minimum value of the DM evaporation mass is obtained for super-Jupiters and brown dwarfs, m(ev)(ap) similar or equal to 0.7 GeV. For other values of the scattering cross section, the DM evaporation mass only varies by a factor smaller than three within the range 10(-41) cm(2) <= sigma(p) <= 10(-31) cm(2), where sigma(p) is the spin-independent DM-nucleon scattering cross section. Its dependence on parameters such as the galactic DM density and velocity, or the scattering and annihilation cross sections is only logarithmic, and details on the density and temperature profiles of celestial bodies have also a small impact.  
  Address [Garani, Raghuveer] INFN Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000804029400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5243  
Permanent link to this record
 

 
Author Assam, I.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Poppe, B.; Siebert, F.A. doi  openurl
  Title (down) Evaluation of dosimetric effects of metallic artifact reduction and tissue assignment on Monte Carlo dose calculations for I-125 prostate implants Type Journal Article
  Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 49 Issue Pages 6195-6208  
  Keywords metallic artifact reduction; Monte Carlo dosimetry; post-implant CT; prostate brachytherapy; tissue assignment schemes; voxelized virtual patient model  
  Abstract Purpose Monte Carlo (MC) simulation studies, aimed at evaluating the magnitude of tissue heterogeneity in I-125 prostate permanent seed implant brachytherapy (BT), customarily use clinical post-implant CT images to generate a virtual representation of a realistic patient model (virtual patient model). Metallic artifact reduction (MAR) techniques and tissue assignment schemes (TAS) are implemented on the post-implant CT images to mollify metallic artifacts due to BT seeds and to assign tissue types to the voxels corresponding to the bright seed spots and streaking artifacts, respectively. The objective of this study is to assess the combined influence of MAR and TAS on MC absorbed dose calculations in post-implant CT-based phantoms. The virtual patient models used for I-125 prostate implant MC absorbed dose calculations in this study are derived from the CT images of an external radiotherapy prostate patient without BT seeds and prostatic calcifications, thus averting the need to implement MAR and TAS. Methods The geometry of the IsoSeed I25.S17plus source is validated by comparing the MC calculated results of the TG-43 parameters for the line source approximation with the TG-43U1S2 consensus data. Four MC absorbed dose calculations are performed in two virtual patient models using the egs_brachy MC code: (1) TG-43-based D-w,w-TG(43), (2) D-w,D-w-MBDC that accounts for interseed scattering and attenuation (ISA), (3) D-m,D-m that examines ISA and tissue heterogeneity by scoring absorbed dose in tissue, and (4) D-w,D-m that unlike D-m,D-m scores absorbed dose in water. The MC absorbed doses (1) and (2) are simulated in a TG-43 patient phantom derived by assigning the densities of every voxel to 1.00 g cm(-3) (water), whereas MC absorbed doses (3) and (4) are scored in the TG-186 patient phantom generated by mapping the mass density of each voxel to tissue according to a CT calibration curve. The MC absorbed doses calculated in this study are compared with VariSeed v8.0 calculated absorbed doses. To evaluate the dosimetric effect of MAR and TAS, the MC absorbed doses of this work (independent of MAR and TAS) are compared to the MC absorbed doses of different I-125 source models from previous studies that were calculated with different MC codes using post-implant CT-based phantoms generated by implementing MAR and TAS on post-implant CT images. Results The very good agreement of TG-43 parameters of this study and the published consensus data within 3% validates the geometry of the IsoSeed I25.S17plus source. For the clinical studies, the TG-43-based calculations show a D-90 overestimation of more than 4% compared to the more realistic MC methods due to ISA and tissue composition. The results of this work generally show few discrepancies with the post-implant CT-based dosimetry studies with respect to the D-90 absorbed dose metric parameter. These discrepancies are mainly Type B uncertainties due to the different I-125 source models and MC codes. Conclusions The implementation of MAR and TAS on post-implant CT images have no dosimetric effect on the I-125 prostate MC absorbed dose calculation in post-implant CT-based phantoms.  
  Address [Assam, Isong; Siebert, Frank-Andre] UKSH, Clin Radiotherapy Radiooncol, Campus Kiel, Kiel, Germany, Email: Isong.Assam@uksh.de  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000835807200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5321  
Permanent link to this record
 

 
Author Alvarez-Ortega, D.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title (down) Eternal versus singular observers in interacting dark-energy-dark-matter models Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 2 Pages 023523 - 14pp  
  Keywords  
  Abstract Interacting dark-energy-dark-matter models have been widely analyzed in the literature in an attempt to find traces of new physics beyond the usual cosmological (Lambda CDM) models. Such a coupling between both dark components is usually introduced in a phenomenological way through a flux in the continuity equation. However, models with a Lagrangian formulation are also possible. A class of the latter assumes a conformal/disformal coupling that leads to a fifth force on the dark-matter component, which consequently does not follow the same geodesics as the other (baryonic, radiation, and dark-energy) matter sources. Here we analyze how the usual cosmological singularities of the standard matter frame are seen from the dark-matter one, concluding that by choosing an appropriate coupling, dark-matter observers will see no singularities but a non beginning, non ending universe. By considering two simple phenomenological models we show that such a type of coupling can fit observational data as well as the usual Lambda CDM model.  
  Address [Alvarez-Ortega, Diego] Inst Fis Cantabria CSIC UC, Avda Castros S-N, Santander 39005, Spain, Email: diego.alvarezo@alumnos.unican.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000842768300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5345  
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title (down) Establishing the heavy quark spin and light flavor molecular multiplets of the X(3872), Z(c)(3900), and X(3960) br Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 094002 - 13pp  
  Keywords  
  Abstract Recently, the LHCb Collaboration reported a near-threshold enhancement X(3960) in the D+sD-s invariant mass distribution. We show that the data can be well described by either a bound or a virtual state below the D+sD-s threshold. The mass given by the pole position is (3928 +/- 3) MeV. Using this mass and the existing information on the X(3872) and Zc(3900) resonances, a complete spectrum of the S-wave hadronic molecules formed by a pair of ground state charmed and anticharmed mesons is established. Thus, pole positions of the partners of the X(3872) , Zc(3900) , and the newly observed D+sD-s state are predicted. Calculations have been carried out at the leading order of nonrelativistic effective field theory and considering both heavy quark spin and light flavor SU(3) symmetries, though conservative errors from the breaking of these symmetries are provided.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000886709000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5428  
Permanent link to this record
 

 
Author Papavassiliou, J. url  doi
openurl 
  Title (down) Emergence of mass in the gauge sector of QCD Type Journal Article
  Year 2022 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 46 Issue 11 Pages 112001 - 23pp  
  Keywords non perturbative QCD; Schwinger-Dyson equations; Schwinger functions  
  Abstract It is currently widely accepted that gluons, while massless at the level of the fundamental QCD Lagrangian, acquire an effective mass through the non-Abelian implementation of the classic Schwinger mechanism. The key dynamical ingredient that triggers the onset of this mechanism is the formation of composite massless poles inside the fundamental vertices of the theory. These poles enter the evolution equation of the gluon propagator and nontrivially affect the way the Slavnov-Taylor identities of the vertices are resolved, inducing a smoking-gun displacement in the corresponding Ward identities. In this article, we present a comprehensive review of the pivotal concepts associated with this dynamical scenario, emphasizing the synergy between functional methods and lattice simulations and highlighting recent advances that corroborate the action of the Schwinger mechanism in QCD.  
  Address [Papavassiliou, J.] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: joannis.papavassiliou@uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000873336100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5398  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva