toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nath, N.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (down) Testing generalized CP symmetries with precision studies at DUNE Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 7 Pages 075005 - 13pp  
  Keywords  
  Abstract We examine the capabilities of the DUNE experiment in probing leptonic CP violation within the framework of theories with generalized CP symmetries characterized by the texture zeros of the corresponding CP transformation matrices. We investigate DUNE's potential to probe the two least known oscillation parameters, the atmospheric mixing angle theta(23) and the Dirac CP phase delta(CP). We fix theory-motivated benchmarks for (sin(2)theta(23), delta(CP)) and take them as true values in our simulations. Assuming 3.5 years of neutrino running plus 3.5 years in the antineutrino mode, we show that in all cases DUNE can significantly constrain and in certain cases rule out the generalized CP texture zero patterns.  
  Address [Nath, Newton] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China, Email: newton@ihep.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000463893200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3976  
Permanent link to this record
 

 
Author Cosme, C.; Dutra, M.; Godfrey, S.; Gray, T. url  doi
openurl 
  Title (down) Testing freeze-in with axial and vector Z ' bosons Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 056 - 27pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract The freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter in the early universe is an appealing alternative to the well-known – and constrained – Weakly Interacting Massive Particle (WIMP) paradigm. Although challenging, the phenomenology of FIMP dark matter has been receiving growing attention and is possible in a few scenarios. In this work, we contribute to this endeavor by considering a Z ' portal to fermionic dark matter, with the Z ' having both vector and axial couplings and a mass ranging from MeV up to PeV. We evaluate the bounds on both freeze-in and freeze-out from direct detection, atomic parity violation, leptonic anomalous magnetic moments, neutrino-electron scattering, collider, and beam dump experiments. We show that FIMPs can already be tested by most of these experiments in a complementary way, whereas WIMPs are especially viable in the Z ' low mass regime, in addition to the Z ' resonance region. We also discuss the role of the axial couplings of Z ' in our results. We therefore hope to motivate specific realizations of this model in the context of FIMPs, as well as searches for these elusive dark matter candidates.  
  Address [Cosme, Catarina; Dutra, Maira; Godfrey, Stephen; Gray, Taylor] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada, Email: catarina.cosme@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000695081900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4962  
Permanent link to this record
 

 
Author Ciemala, M. et al; Domingo-Pardo, C.; Perez-Vidal, R.M. url  doi
openurl 
  Title (down) Testing ab initio nuclear structure in neutron-rich nuclei: Lifetime measurements of second 2(+) state in C-16 and O-20 Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 101 Issue 2 Pages 021303 - 7pp  
  Keywords  
  Abstract To test the predictive power of ab initio nuclear structure theory, the lifetime of the second 2(+) state in neutron-rich O-20, tau(2(2)(+)) = 150(-30)(+80) fs, and an estimate for the lifetime of the second 2(+) state in C-16 have been obtained for the first time. The results were achieved via a novel Monte Carlo technique that allowed us to measure nuclear state lifetimes in the tens-to-hundreds of femtoseconds range by analyzing the Doppler-shifted gamma-transition line shapes of products of low-energy transfer and deep-inelastic processes in the reaction O-18 (7.0 MeV/u) + Ta-181. The requested sensitivity could only be reached owing to the excellent performances of the Advanced gamma-Tracking Array AGATA, coupled to the PARIS scintillator array and to the VAMOS++ magnetic spectrometer. The experimental lifetimes agree with predictions of ab initio calculations using two- and three-nucleon interactions, obtained with the valence-space in-medium similarity renormalization group for O-20 and with the no-core shell model for C-16. The present measurement shows the power of electromagnetic observables, determined with high-precision gamma spectroscopy, to assess the quality of first-principles nuclear structure calculations, complementing common benchmarks based on nuclear energies. The proposed experimental approach will be essential for short lifetime measurements in unexplored regions of the nuclear chart, including r-process nuclei, when intense beams, produced by Isotope Separation On-Line (ISOL) techniques, become available.  
  Address [Ciemala, M.; Fornal, B.; Maj, A.; Bednarczyk, P.; Cieplicka-Orynczak, N.; Grebosz, J.; Iskra, L. W.; Kmiecik, M.; Mazurek, K.; Matejska-Minda, M.; Wasilewska, B.; Zieblinski, M.] Inst Nucl Phys, PAN, PL-31342 Krakow, Poland, Email: michal.ciemala@ifj.edu.pl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000517222700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4311  
Permanent link to this record
 

 
Author Garofalo, M.; Romero-Lopez, F.; Rusetsky, A.; Urbach, C. url  doi
openurl 
  Title (down) Testing a new method for scattering in finite volume in the phi(4) theory Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 11 Pages 1034 - 5pp  
  Keywords  
  Abstract We test an alternative proposal by Bruno and Hansen (J High Energy Phys 2021(6), https://doi.org/10.1007/JHEP06(2021)043, 2021) to extract the scattering length from lattice simulations in a finite volume. For this, we use a scalar phi(4) theory with two mass nondegenerate particles and explore various strategies to implement this new method. We find that the results are comparable to those obtained from the Luscher method, with somewhat smaller statistical uncertainties at larger volumes.  
  Address [Garofalo, Marco; Rusetsky, Akaki; Urbach, Carsten] Rheinische Friedrich Wilhelms Univ Bonn, HISKP Theory, Nussallee 14-16, D-53115 Bonn, Germany, Email: garofalo@hiskp.uni-bonn.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000722881700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5035  
Permanent link to this record
 

 
Author Srivastava, R.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title (down) Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 778 Issue Pages 459-463  
  Keywords  
  Abstract Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters theta(23) and delta(CP). We present the expected improved sensitivity on these parameters for different assumptions.  
  Address [Srivastava, Rahul; Ternes, Christoph A.; Tortola, Mariam; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: rahulsri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426436700063 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3512  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva