toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title (down) HAWC Study of the Ultra-high-energy Spectrum of MGRO J1908+06 Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 928 Issue 2 Pages 116 - 13pp  
  Keywords  
  Abstract We report TeV gamma-ray observations of the ultra-high-energy source MGRO J1908+06 using data from the High Altitude Water Cherenkov Observatory. This source is one of the highest-energy known gamma-ray sources, with emission extending past 200 TeV. Modeling suggests that the bulk of the TeV gamma-ray emission is leptonic in nature, driven by the energetic radio-faint pulsar PSR J1907+0602. Depending on what assumptions are included in the model, a hadronic component may also be allowed. Using the results of the modeling, we discuss implications for detection prospects by multi-messenger campaigns.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: kmalone@lanl.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776453700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5187  
Permanent link to this record
 

 
Author Arguelles, C.A.; Muñoz, V.; Shoemaker, I.M.; Takhistov, V. url  doi
openurl 
  Title (down) Hadrophilic light dark matter from the atmosphere Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 833 Issue Pages 137363 - 6pp  
  Keywords  
  Abstract Light sub-GeV dark matter (DM) constitutes an underexplored target, beyond the optimized sensitivity of typical direct DM detection experiments. We comprehensively investigate hadrophilic light DM produced from cosmic-ray collisions with the atmosphere. The resulting relativistic DM, originating from meson decays, can be efficiently observed in variety of experiments, such as XENON1T. We include for the first time decays of eta, eta' and K+ mesons, leading to improved limits for DM masses above few hundred MeV. We incorporate an exact treatment of the DM attenuation in Earth and demonstrate that nuclear form factor effects can significantly impact the resulting testable DM parameter space. Further, we establish projections for upcoming experiments, such as DARWIN, over a wide range of DM masses below the GeV scale.  
  Address [Arguelles, Carlos A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: carguelles@fas.harvard.edu;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000865640700036 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5388  
Permanent link to this record
 

 
Author Doring, C.; Centelles Chulia, S.; Lindner, M.; Schaefer, B.M.; Bartelmann, M. url  doi
openurl 
  Title (down) Gravitational wave induced baryon acoustic oscillations Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 12 Issue 3 Pages 114 - 47pp  
  Keywords  
  Abstract We study the impact of gravitational waves originating from a first order phase transition on structure formation. To do so, we perform a second order perturbation analysis in the 1 + 3 covariant framework and derive a wave equation in which second order, adiabatic density perturbations of the photon-baryon fluid are sourced by the gravitational wave energy density during radiation domination and on sub-horizon scales. The scale on which such waves affect the energy density perturbation spectrum is found to be proportional to the horizon size at the time of the phase transition times its inverse duration. Consequently, structure of the size of galaxies and bigger can only be affected in this way by relatively late phase transitions at >= 10(6) s. Using cosmic variance as a bound we derive limits on the strength a and the relative duration (beta/H-*)(-1) of phase transitions as functions of the time of their occurrence which results in a new exclusion region for the energy density in gravitational waves today. We find that the cosmic variance bound forbids only relative long lasting phase transitions, e.g. beta/H-* less than or similar to 6.8 for t(*) approximate to 5 x 10(11 )s, which exhibit a substantial amount of supercooling alpha > 20 to affect the matter power spectrum.  
  Address [Doering, Christian; Lindner, Manfred] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: cdoering@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000782238100035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5201  
Permanent link to this record
 

 
Author Horak, J.; Ihssen, F.; Papavassiliou, J.; Pawlowski, J.M.; Weber, A.; Wetterich, C. url  doi
openurl 
  Title (down) Gluon condensates and effective gluon mass Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 13 Issue 2 Pages 042 - 40pp  
  Keywords  
  Abstract Lattice simulations along with studies in continuum QCD indicate that non-perturbative quantum fluctuations lead to an infrared regularisation of the gluon propagator in covariant gauges in the form of an effective mass-like behaviour. In the present work we propose an analytic understanding of this phenomenon in terms of gluon condensation through a dynamical version of the Higgs mechanism, leading to the emergence of color condensates. Within the functional renormalisation group approach we compute the effective potential of covariantly constant field strengths, whose non-trivial minimum is related to the color condensates. In the physical case of an SU(3) gauge group this is an octet condensate. The value of the gluon mass obtained through this procedure compares very well to lattice results and the mass gap arising from alternative dynamical scenarios.  
  Address [Horak, Jan; Ihssen, Friederike; Pawlowski, Jan M.; Weber, Axel; Wetterich, Christof] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863121000008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5379  
Permanent link to this record
 

 
Author Rinaldi, M.; Vento, V. url  doi
openurl 
  Title (down) Glueballs at high temperature within the hard-wall holographic model Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 2 Pages 140 - 10pp  
  Keywords  
  Abstract In this investigation an holographic description of the deconfined phase transition of scalar and tensor glueballs is presented within the so called hard-wall model. The spectra of these bound states of gluons have been calculated from the linearized Einstein equations for a graviton propagating from a thermal AdS(5) space to an AdS Black-Hole. In this framework, the deconfined phase is reached via a two steps mechanism. We propose that the transition between the AdS thermal sector to the BH is described via a first order phase transition, with discontinuous masses at the critical temperature, which has been determined by Herzog's method of regulating the free energy densities. Then, the glueball masses diverge with increasing T in the BH phase and thus lead to deconfined states a la Hagedorn.  
  Address [Rinaldi, Matteo] Univ Perugia, Ist Nazl Fis Nucl, Dipartimento Fis & Geol, Sect Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000755916200007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5132  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva