Chen, P., Ding, G. J., Srivastava, R., & Valle, J. W. F. (2019). Predicting neutrino oscillations with “bi-large” lepton mixing matrices. Phys. Lett. B, 792, 461–464.
Abstract: We propose two schemes for the lepton mixing matrix U = (U1U nu)-U-dagger, where U = U-1 refers to the charged sector, and U-v denotes the neutrino diagonalization matrix. We assume U-nu to be CP conserving and its three angles to be connected with the Cabibbo angle in a simple manner. CP violation arises solely from the U-1, assumed to have the CKM form, U-1 similar or equal to V-CKM, suggested by unification. Oscillation parameters depend on a single parameter, leading to narrow ranges for the “solar” and “accelerator” angles theta(12) and theta(23), as well as for the CP phase, predicted as delta(CP) similar to +/- 1.3 pi.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., & Ruiz Valls, P. (2014). Precision measurement of the ratio of the Lambda(0)(b) to (B)over-bar(0) lifetimes. Phys. Lett. B, 734, 122–130.
Abstract: The LHCb measurement of the lifetime ratio of the Lambda(0)(b) baryon to the (B) over bar (0) meson is updated using data corresponding to an integrated luminosity of 3.0 fb(-1) collected using 7 and 8 TeV centre-of-mass energy pp collisions at the LHC. The decay modes used are Lambda(0)(b) -> J/psi pK(-) and (B) over bar (0) -> J/psi pi K-+(-), where the pi K-+(-) mass is consistent with that of the (K) over bar*(0)(892) meson. The lifetime ratio is determined with unprecedented precision to be 0.974 +/- 0.006 +/- 0.004, where the first uncertainty is statistical and the second systematic. This result is in agreement with original theoretical predictions based on the heavy quark expansion. Using the current world average of the (B) over bar (0) lifetime, the Lambda(0)(b) lifetime is found to be 1.479 +/- 0.009 +/- 0.010 ps.
|
Duan, M. Y., Bayar, M., & Oset, E. (2024). Precise determination of the ηΛ scattering length and effective range and relationship to the Λ(1670) resonance. Phys. Lett. B, 857, 139003–5pp.
Abstract: We use the Belle data on the K(-)p mass distribution of the Lambda(+)(c)-> pK(-)pi(+) reaction near the eta Lambda threshold to determine the eta Lambda scattering length and effective range. We show that from these data alone we can determine the value of a with better precision than so far determined, and the value of r(0) for the first time. The addition of the K(-)p ->eta Lambda data allows us to improve the precision of these magnitudes, with errors smaller than 15%. We also determine with high precision the pole position of the Lambda(1670).
|
Jungclaus, A., Doornenbal, P., Acosta, J., Vaquero, V., Browne, F., Cortes, M. L., et al. (2024). Position of the single-particle 3/2- state in 135Sn and the N = 90 subshell closure. Phys. Lett. B, 851, 138561–5pp.
Abstract: The decay of excited states of the nucleus Sn-135, with three neutrons outside the doubly-magic Sn-132 core, was studied in an experiment performed at the Radioactive Isotope Beam Factory at RIKEN. Several gamma rays emitted from excited Sn-135 ions were observed following one-neutron and one-neutron-one-proton removal from Sn-136 and Sb-137 beams, respectively, on a beryllium target at relativistic energies. Based on the analogy to 133Sn populated via one-neutron removal from Sn-134, an excitation energy of 695(15) keV is assigned to the 3/2(-) state with strongest single-particle character in 135Sn. This result provides the first direct information about the evolution of the neutron shell structure beyond N = 82 and thus allows for a crucial test of shellmodel calculations in this region. The experimental findings are in full agreement with calculations performed employing microscopic effective two-body interactions derived from CD-Bonn and N3LO nucleon-nucleon potentials, which do not predict a pronounced subshell gap at neutron number N=90. The occurrence of such a gap in Sn-140, i.e., when the 1f(7/2) orbital is completely filled, had been proposed in the past, in analogy to the magicity of Ca-48, featuring a completely filled 0f(7/2) orbital one harmonic oscillator shell below.
|
Lobo, F. S. N., Martinez-Asencio, J., Olmo, G. J., & Rubiera-Garcia, D. (2014). Planck scale physics and topology change through an exactly solvable model. Phys. Lett. B, 731, 163–167.
Abstract: We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated A la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space-time and the meaning of curvature divergences in this theory.
|