|   | 
Details
   web
Records
Author Bueno Rogerio, R.J.; Lima, R.D.; Duarte, L.; Hoff da Silva, J.M.; Dias, M.; Senise, C.R.
Title (down) Mass-dimension-one fermions and their gravitational interaction Type Journal Article
Year 2019 Publication Europhysics Letters Abbreviated Journal EPL
Volume 128 Issue 2 Pages 20004 - 6pp
Keywords
Abstract We investigate in detail the interaction between the spin-(1/2) field endowed with mass dimension one and the graviton. We obtain an interaction vertex that combines the characteristics of scalar-graviton and Dirac's fermion-graviton vertices, due to the scalar-dynamic attribute and the fermionic structure of the mass-dimension-one field. It is shown that this vertex obeys the Ward-Takahashi identity, ensuring the gauge invariance for the interaction. In the contribution of the mass-dimension-one fermion to the graviton propagator at one-loop level, we found the conditions for the cancellation of the tadpole term by a cosmological counterterm. We calculate the scattering process for arbitrary momentum. For low energies, the result reveals that only the scalar sector present in the vertex contributes to the gravitational potential. Finally, we evaluate the non-relativistic limit of the gravitational interaction and obtain an attractive Newtonian potential, as required for a dark-matter candidate.
Address [Bueno Rogerio, R. J.] Univ Fed Itajuba UNIFEI, IFQ, Ave BPS 1303, BR-37500903 Itajuba, MG, Brazil
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Medium
Area Expedition Conference
Notes WOS:000518763000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4317
Permanent link to this record
 

 
Author Poley, L.; Blue, A.; Bloch, I.; Buttar, C.; Fadeyev, V.; Fernandez-Tejero, J.; Fleta, C.; Hacker, J.; Lacasta, C.; Miñano, M.; Renzmann, M.; Rossi, E.; Sawyer, C.; Sperlich, D.; Stegler, M.; Ullan, M.; Unno, Y.
Title (down) Mapping the depleted area of silicon diodes using a micro-focused X-ray beam Type Journal Article
Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P03024 - 14pp
Keywords Si microstrip and pad detectors; Detector design and construction technologies and materials; Particle tracking detectors (Solid-state detectors); Radiation-hard detectors
Abstract For the Phase-II Upgrade of the ATLAS detector at CERN, the current ATLAS Inner Detector will be replaced with the ATLAS Inner Tracker (ITk). The ITk will be an all-silicon detector, consisting of a pixel tracker and a strip tracker. Sensors for the ITk strip tracker are required to have a low leakage current up to bias voltages of 500V to maintain a low noise and power dissipation. In order to minimise sensor leakage currents, particularly in the high-radiation environment inside the ATLAS detector, sensors are foreseen to be operated at low temperatures and to be manufactured from wafers with a high bulk resistivity of several k Omega.cm. Simulations showed the electric field inside sensors with high bulk resistivity to extend towards the sensor edge, which could lead to increased surface currents for narrow dicing edges. In order to map the electric field inside biased silicon sensors with high bulk resistivity, three diodes from ATLAS silicon strip sensor prototype wafers were studied with a monochromatic, micro-focused X-ray beam at the Diamond Light Source (Didcot, U.K.). For all devices under investigation, the electric field inside the diode was mapped and its dependence on the applied bias voltage was studied.
Address [Poley, L.] Lawrence Berkeley Natl Lab, Cyclotron Rd, Berkeley, CA 94720 USA, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000463330900012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3973
Permanent link to this record
 

 
Author Hernandez, P.; Jones-Perez, J.; Suarez-Navarro, O.
Title (down) Majorana vs pseudo-Dirac neutrinos at the ILC Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 3 Pages 220 - 11pp
Keywords
Abstract Neutrino masses could originate in seesaw models testable at colliders, with light mediators and an approximate lepton number symmetry. The minimal model of this type contains two quasi-degenerate Majorana fermions forming a pseudo-Dirac pair. An important question is to what extent future colliders will have sensitivity to the splitting between the Majorana components, since this quantity signals the breaking of lepton number and is connected to the light neutrino masses. We consider the production of these neutral heavy leptons at the ILC, where their displaced decays provide a golden signal: a forward-backward charge asymmetry, which depends crucially on the mass splitting between the two Majorana components. We show that this observable can constrain the mass splitting to values much lower than current bounds from neutrinoless double beta decay and natural loop corrections.
Address [Hernandez, P.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, Valencia 46071, Spain, Email: jones.j@pucp.edu.pe
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000460985800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3960
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Mamuzic, J.; Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title (down) Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 123 Issue 2 Pages 021802 - 7pp
Keywords
Abstract MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, 1/2, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
Address [Acharya, B.; Alexandre, J.; Baines, S.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: vasiliki.mitsou@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000474894200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4077
Permanent link to this record
 

 
Author Curtin, D. et al; Hirsch, M.
Title (down) Long-lived particles at the energy frontier: the MATHUSLA physics case Type Journal Article
Year 2019 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 82 Issue 11 Pages 116201 - 133pp
Keywords Large Hadron Collider; long-lived particles; hierarchy problem; dark matter; baryogenesis; neutrinos; simplified models
Abstract We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the μm scale up to the Big Bang Nucleosynthesis limit of similar to 10(7) m. Neutral LLPs with lifetimes above similar to 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.
Address [Curtin, David] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada, Email: dcurtin@physics.utoronto.ca
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000499698000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4215
Permanent link to this record