Bonilla, C., Morisi, S., Peinado, E., & Valle, J. W. F. (2015). Relating quarks and leptons with the T-7 flavour group. Phys. Lett. B, 742, 99–106.
Abstract: In this letter we present a model for quarks and leptons based on T-7 as flavour symmetry, predicting a canonical mass relation between charged leptons and down-type quarks proposed earlier. Neutrino masses are generated through a Type-I seesaw mechanism, with predicted correlations between the atmospheric mixing angle and neutrino masses. Compatibility with oscillation results leads to lower bounds for the lightest neutrino mass as well as for the neutrinoless double beta decay rates, even for normal neutrino mass hierarchy.
|
Delhom, A., Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2022). Radiative corrections in metric-affine bumblebee model. Phys. Lett. B, 826, 136932–9pp.
Abstract: We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric which, besides the zeroth-order Minkowskian contribution, also has the vector field contributions of the bumblebee, and show that it is renormalizable at one-loop level. From our analysis it also follows that the non-metricity of this theory is determined by the gradient of the bumblebee field, and that it can acquire a vacuum expectation value due to the contribution of the bumblebee field.
|
Caputo, A. (2019). Radiative axion inflation. Phys. Lett. B, 797, 134824–7pp.
Abstract: Planck data robustly exclude the simple lambda phi(4) scenario for inflation. This is also the case for models of “Axion Inflation” in which the inflaton field is the radial part of the Peccei-Quinn complex scalar field. In this letter we show that for the KSVZ model it is possible to match the data taking into account radiative corrections to the tree level potential. After writing down the 1-loop Coleman-Weinberg potential, we show that a radiative plateau is easily generated thanks to the fact that the heavy quarks are charged under SU(3)(c) in order to solve the strong CP problem. We also give a numerical example for which the inflationary observables are computed and the heavy quarks are predicted to have a mass m(Q) greater than or similar to 10(2) TeV.
|
King, S. F., Morisi, S., Peinado, E., & Valle, J. W. F. (2013). Quark-lepton mass relation in a realistic A(4) extension of the Standard Model. Phys. Lett. B, 724(1-3), 68–72.
Abstract: We propose a realistic A(4) extension of the Standard Model involving a particular quark-lepton mass relation, namely that the ratio of the third family mass to the geometric mean of the first and second family masses are equal for down-type quarks and charged leptons. This relation, which is approximately renormalization group invariant, is usually regarded as arising from the Georgi-Jarlskog relations, but in the present model there is no unification group or supersymmetry. In the neutrino sector we propose a simple modification of the so-called Zee-Wolfenstein mass matrix pattern which allows an acceptable reactor angle along with a deviation of the atmospheric and solar angles from their bi-maximal values. Quark masses, mixing angles and CP violation are well described by a numerical fit.
|
Gil-Dominguez, F., & Molina, R. (2023). Quark mass dependence of the low-lying charmed mesons at one loop in HH & chi; PT. Phys. Lett. B, 843, 137997–15pp.
Abstract: We study the light and heavy quark mass dependence of the low-lying charmed mesons in the framework of one-loop HH & chi; PT. The low energy constants are determined by analyzing the available lattice data from different LQCD simulations. Model selection tools are implemented to determine the relevant parameters as required by data with a higher precision. Discretization and other effects due to the charm quark mass setting are discussed.
|