toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barrientos, L.; Borja-Lloret, M.; Casana, J.V.; Hueso-Gonzalez, F.; Ros, A.; Roser, J.; Senra, C.; Solaz, C.; Viegas, R.; Llosa, G. doi  openurl
  Title (down) System characterization and performance studies with MACACO III Compton camera Type Journal Article
  Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 208 Issue Pages 110922 - 13pp  
  Keywords Compton camera; Scintillator crystals; Silicon photomultipliers  
  Abstract The IRIS group of IFIC-Valencia has developed a Compton camera prototype. The system detectors are made of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. Two models of silicon photomultipliers arrays with different micro pixel pitch (25 and 50 μm) have been chosen as possible candidates to improve the response of the new system. Characterization studies with a 22Na point-like source have indicated that the 25 μm photodetector provided better performance in terms of energy resolution (5.2% FWHM at 511 keV) and angular resolution (6.9 degrees FWHM at 1275 keV), and more stability with temperature variations. In addition, MACACO III imaging capabilities have been assessed using a structure composed of thirty-seven 22Na point-like sources. Furthermore, in order to evaluate possible ways of improving the system performance, several studies have been carried out by means of simulations both in realistic and performance improved conditions. In this work, the system performance is evaluated for its future application in different areas.  
  Address [Barrientos, L.; Borja-Lloret, M.; Casana, J. V.; Hueso-Gonzalez, F.; Ros, A.; Roser, J.; Senra, C.; Solaz, C.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IF, Valencia, Spain, Email: Luis.Barrientos@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000962800400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5511  
Permanent link to this record
 

 
Author Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. . url  doi
openurl 
  Title (down) Synergy between cosmological and laboratory searches in neutrino physics Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 42 Issue Pages 101333 - 36pp  
  Keywords Neutrinos; Cosmology; Neutrino phenomenology  
  Abstract The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories.  
  Address [Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001112368600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5854  
Permanent link to this record
 

 
Author Bernabeu, J. url  doi
openurl 
  Title (down) Symmetries and Their Breaking in the Fundamental Laws of Physics Type Journal Article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 8 Pages 1316 - 27pp  
  Keywords flavour families; colour charges; gauge symmetries; chirality; discrete symmetries; neutrinos; spontaneous breaking  
  Abstract Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetric requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact colour SU(3) local gauge symmetry. Parity Violation in weak interactions led us to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the Unifying Electro-Weak SU(2) x U(1) symmetry, which predicted novel weak neutral current interactions. CP-Violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, which would invalidate the gauge symmetry of the quantum field theory, led to Quark-Lepton Symmetry. Neutrinos were postulated in order to save the conservation laws of energy and angular momentum in nuclear beta decay. After the ups and downs of their mass, neutrino oscillations were discovered in 1998, opening a new era about their origin of mass, mixing, discrete symmetries and the possibility of global lepton-number violation through Majorana mass terms and Leptogenesis as the source of the matter-antimatter asymmetry in the universe. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this Standard Theory, is the triumph of Symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass without affecting the excellent description of the interactions. This is the Brout-Englert-Higgs Mechanism, which produces the Higgs Boson as a remnant, discovered at CERN in 2012. Open present problems are addressed with by searching the New Physics Beyond-the-Standard-Model.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564717500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4523  
Permanent link to this record
 

 
Author Domcke, V.; Garcia-Cely, C.; Lee, S.M.; Rodd, N.L. url  doi
openurl 
  Title (down) Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 128 - 51pp  
  Keywords Axions and ALPs; Early Universe Particle Physics  
  Abstract In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.  
  Address [Domcke, Valerie; Lee, Sung Mook; Rodd, Nicholas L.] CERN, Theoret Phys Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001189228700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6049  
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Jones Perez, J. url  doi
openurl 
  Title (down) SUSY renormalization group effects in ultra high energy neutrinos Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 133 - 26pp  
  Keywords Neutrino Physics; Supersymmetric Standard Model; Renormalization Group  
  Abstract We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: (Phi(0)(v epsilon+(v) over bar epsilon) : Phi(0)(v mu+(v) over bar mu) : Phi(0)(v tau+(v) over bar tau)) = (1 : 2 : 0), (0 : 1 : 0), (1 : 0 : 0), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q(2) >= 10(7) GeV(2). However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale. Cerenkov detector such as IceCube.  
  Address [Bustamante, M; Gago, AM] Pontificia Univ Catolica Peru, Dept Ciencias, Sec Fis, Lima, Peru, Email: mbustamante@pucp.edu.pe  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000291364500065 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 684  
Permanent link to this record
 

 
Author Coves, A.; Maestre, H.; Archiles, R.; Andres, M.V.; Gimeno, B. doi  openurl
  Title (down) Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal IEEE Access  
  Volume 10 Issue Pages 18843-18854  
  Keywords Electromagnetic waveguides; Optical waveguides; Planar waveguides; Gratings; Surface waves; Surface impedance; Optical surface waves; Surface impedance; hollow-core waveguide; surface-relief grating  
  Abstract A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.  
  Address [Coves, Angela; Maestre, Haroldo] Univ Miguel Hernandez Elche, Dept Commun Engn I3E, Elche 03202, Spain, Email: angela.coves@umh.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000760714900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5139  
Permanent link to this record
 

 
Author Abbar, S.; Capozzi, F. url  doi
openurl 
  Title (down) Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 051 - 13pp  
  Keywords supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas  
  Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.  
  Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776551600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5186  
Permanent link to this record
 

 
Author Cannoni, M.; Ellis, J.; Gomez, M.E.; Lola, S.; Ruiz de Austri, R. url  doi
openurl 
  Title (down) Supersymmetry searches in GUT models with non-universal scalar masses Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 041 - 23pp  
  Keywords particle physics – cosmology connection; supersymmetry and cosmology  
  Abstract We study SO(10). SU(5) and flipped SU(5) GUT models with non-universal soft supersynrimetry-breaking scalar masses, exploring how they are constrained by LIIC super-synrimetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the-various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of (t) over tilde (1-chi) coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E-T, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CIA gamma-ray searches.  
  Address [Cannoni, M.; Gomez, M. E.] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, Huelva 21071, Spain, Email: mirco.ccannoni@dfa.uhu.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375608200043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2674  
Permanent link to this record
 

 
Author Maji, R.; Park, W.I. url  doi
openurl 
  Title (down) Supersymmetric U(1)B-L flat direction and NANOGrav 15 year data Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 015 - 19pp  
  Keywords Cosmic strings; domain walls; monopoles; cosmological phase transitions; cosmology of theories beyond the SM; gravitational waves / sources  
  Abstract We show that, when connected with monopoles, the flat D-flat direction breaking the local U(1)B-L symmetry as an extension of the minimal supersymmetric standard model can be responsible for the signal of a stochastic gravitational wave background recently reported by NANOGrav collaborations, while naturally satisfying constraints at high frequency band. Thanks to the flatness of the direction, a phase of thermal inflation arises naturally. The reheating temperature is quite low, and suppresses signals at frequencies higher than the characteristic frequency set by the reheating temperature. Notably, forthcoming spaced based experiments such as LISA can probe the cutoff frequency, providing an indirect clue of the scale of soft SUSY-breaking mass parameter.  
  Address [Maji, Rinku] Jeonbuk Natl Univ, Dept Phys, Lab Symmetry & Struct Universe, Jeonju 54896, South Korea, Email: rinkumaji9792@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001147733000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5967  
Permanent link to this record
 

 
Author Hirsch, M.; Reichert, L.; Porod, W. url  doi
openurl 
  Title (down) Supersymmetric mass spectra and the seesaw scale Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 086 - 32pp  
  Keywords Supersymmetry Phenomenology  
  Abstract Supersymmetric mass spectra within two variants of the seesaw mechanism, commonly known as type-II and type-III seesaw, are calculated using full 2-loop RGEs and minimal Supergravity boundary conditions. The type-II seesaw is realized using one pair of 15 and (15) over bar superfields, while the type-III is realized using three copies of 24(M) superfields. Using published, estimated errors on SUSY mass observables attainable at the LHC and in a combined LHC+ILC analysis, we calculate expected errors for the parameters of the models, most notably the seesaw scale. If SUSY particles are within the reach of the ILC, pure mSugra can be distinguished from mSugra plus type-II or type-III seesaw for nearly all relevant values of the seesaw scale. Even in the case when only the much less accurate LHC measurements are used, we find that indications for the seesaw can be found in favourable parts of the parameter space. Since our conclusions crucially depend on the reliability of the theoretically forecasted error bars, we discuss in some detail the accuracies which need to be achieved for the most important LHC and ILC observables before an analysis, such as the one presented here, can find any hints for type-II or type-III seesaw in SUSY spectra.  
  Address [Hirsch, M; Reichert, L] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000291364500018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 685  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva