toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carlomagno, J.P.; Gomez Dumm, D.; Izzo Villafañe, M.F.; Noguera, S.; Scoccola, N.N. url  doi
openurl 
  Title (down) Charged pseudoscalar and vector meson masses in strong magnetic fields in an extended NJL model Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 094035 - 17pp  
  Keywords  
  Abstract The mass spectrum of pi(+) and rho(+) mesons in the presence of a static uniform magnetic field (B) over right arrow is studied within a two-flavor Nambu-Jona-Lasinio-like model. We improve previous calculations, taking into account the effect of Schwinger phases carried by quark propagators and using an expansion of meson fields in terms of the solutions of the corresponding equations of motion for nonzero B. It is shown that the meson polarization functions are diagonal in this basis. Our numerical results for the rho(+) meson spectrum are found to disfavor the existence of a meson condensate induced by the magnetic field. In the case of the pi(+) meson, pi-rho mixing effects are analyzed for the meson lowest-energy state. The predictions of the model are compared with available lattice QCD results.  
  Address [Carlomagno, J. P.; Dumm, D. Gomez] Univ Nacl La Plata, IFLP, CONICET, Dept Fis,Fac Cs Exactas, CC 67, RA-1900 La Plata, Argentina  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000917769000013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5470  
Permanent link to this record
 

 
Author Gomez Dumm, D.; Noguera, S.; Scoccola, N.N. url  doi
openurl 
  Title (down) Charged meson masses under strong magnetic fields: Gauge invariance and Schwinger phases Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 1 Pages 016012 - 29pp  
  Keywords  
  Abstract We study the role of the Schwinger phase (SP) that appears in the propagator of a charged particle in the presence of a static and uniform magnetic field (B) over right arrow. We first note that this phase cannot be removed by a gauge transformation; far from this, we show that it plays an important role in the restoration of the symmetries of the system. Next, we analyze the effect of SPs in the one-loop corrections to charged pion and rho meson self-energies. To carry out this analysis we consider first a simple form for the meson-quark interactions, and then we study the pi(+) and rho(-) propagators within the Nambu-Jona-Lasinio model, performing a numerical analysis of the B dependence of meson lowest energy states. For both pi(+) and rho(-) mesons, we compare the numerical results arising from the full calculation-in which SPs are included in the propagators, and meson wave functions correspond to states of definite Landau quantum number-and those obtained within alternative schemes in which SPs are neglected (or somehow eliminated) and meson states are described by plane waves of definite four-momentum.  
  Address [Dumm, D. Gomez] Univ Nacl La Plata, CONICET, Dept Fis, Fac Ciencias Exactas, CC 67 1900, La Plata, Argentina  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001164658400011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6027  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva