Home | << 1 2 3 4 5 6 7 8 >> |
![]() |
Flores-Tlalpa, A., Lopez Castro, G., & Roig, P. (2016). Five-body leptonic decays of muon and tau lepton. J. High Energy Phys., 04(4), 185–21pp.
Abstract: We study the five-body decays u(-) -> e(-)e(+)e(-)nu u (nu) over bar (e) and tau(-) -> l(-)l'+l'-nu(tau)(nu) over bar (l) for l, l' = e, u within the Standard Model (SM) and in a general effective field theory description of the weak interactions at low energies. We compute the branching ratios and compare our results with two previous – mutually discrepan – SM calculations. By assuming a general structure for the weak currents we derive the expressions for the energy and angular distributions of the three charged leptons when the decaying lepton is polarized, which will be useful in precise tests of the weak charged current at Belle II. In these decays, leptonic T-odd correlations in triple products of spin and momenta – which may signal time reversal violation in the leptonic sector – are suppressed by the tiny neutrino masses. Therefore, a measurement of such T-violating observables would be associated to neutrinoless lepton flavor violating (LFV) decays, where this effect is not extremely suppressed. We also study the backgrounds that the SM five-lepton lepton decays constitute to searches of LFV L- -> ? l(-)l'+l'(-) decays. Searches at high values of the invariant mass of the l'(+)l'(-) pair look the most convenient way to overcome the background.
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2024). Fermionic UV models for neutral triple gauge boson vertices. J. High Energy Phys., 07(7), 275–28pp.
Abstract: Searches for anomalous neutral triple gauge boson couplings (NTGCs) provide important tests for the gauge structure of the standard model. In SMEFT (“standard model effective field theory”) NTGCs appear only at the level of dimension-8 operators. While the phenomenology of these operators has been discussed extensively in the literature, renormalizable UV models that can generate these operators are scarce. In this work, we study a variety of extensions of the SM with heavy fermions and calculate their matching to d = 8 NTGC operators. We point out that the complete matching of UV models requires four different CP-conserving d = 8 operators and that the single CPC d = 8 operator, most commonly used by the experimental collaborations, does not describe all possible NTGC form factors. Despite stringent experimental constraints on NTGCs, limits on the scale of UV models are relatively weak, because their contributions are doubly suppressed (being d = 8 and 1-loop). We suggest a series of benchmark UV scenarios suitable for interpreting searches for NTGCs in the upcoming LHC runs, obtain their current limits and provide estimates for the expected sensitivity of the high-luminosity LHC.
|
Falkowski, A., Gonzalez-Alonso, M., Kopp, J., Soreq, Y., & Tabrizi, Z. (2021). EFT at FASER nu. J. High Energy Phys., 10(10), 086–46pp.
Abstract: We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.
Keywords: Effective Field Theories; Neutrino Physics
|
Foffa, S., Sturani, R., & Torres Bobadilla, W. J. (2021). Efficient resummation of high post-Newtonian contributions to the binding energy. J. High Energy Phys., 02(2), 165–18pp.
Abstract: A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more “efficient” observables like the scattering angle, thus making the EFT approach in harmonic gauge at least as scalable as the others methods.
|
Liem, S., Bertone, G., Calore, F., Ruiz de Austri, R., Tait, T. M. P., Trotta, R., et al. (2016). Effective field theory of dark matter: a global analysis. J. High Energy Phys., 09(9), 077–22pp.
Abstract: We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.
|