Bayar, M., Feijoo, A., & Oset, E. (2023). X(3960) seen in Ds plus Ds- as the X(3930) state seen in D plus D. Phys. Rev. D, 107(3), 034007–5pp.
Abstract: We perform a calculation of the interaction of the D over bar D, Ds over bar Ds coupled channels and find two bound states, one coupling to DD over bar and another one at higher energies coupling mostly to D+s D-s . We identify this latter state with the X0(3930) seen in the D+D- mass distribution in the B+ -D+D-K+ decay, and also show that it produces an enhancement of the D+s D-s mass distribution close to threshold which is compatible with the recent LHCb observation in the B+ -D+s D-s K+ decay which has been identified as a new state, X0(3960).
|
Anzivino, G. et al, Gonzalez-Alonso, M., Passemar, E., & Pich, A. (2024). Workshop summary: Kaons@CERN 2023. Eur. Phys. J. C, 84(4), 377–34pp.
Abstract: Kaon physics is at a turning point – while the rare-kaon experiments NA62 and KOTO are in full swing, the end of their lifetime is approaching and the future experimental landscape needs to be defined. With HIKE, KOTO-II and LHCb-Phase-II on the table and under scrutiny, it is a very good moment in time to take stock and contemplate about the opportunities these experiments and theoretical developments provide for particle physics in the coming decade and beyond. This paper provides a compact summary of talks and discussions from the Kaons@CERN 2023 workshop, held in September 2023 at CERN.
|
Navarro, P., Gimeno, B., Alvarez Melcon, A., Arguedas Cuendis, S., Cogollos, C., Diaz-Morcillo, A., et al. (2022). Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators. Phys. Dark Universe, 36, 101001–14pp.
Abstract: The electromagnetic coupling axion-photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion-photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green's functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy-Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.
|
Real, D., Calvo, D., Zornoza, J. D., & Manzaneda, M. (2023). White Rabbit Expansion Board: Design, Architecture, and Signal Integrity Simulations. Electronics, 12(16), 3394–16pp.
Abstract: The White Rabbit protocol allows synchronization and communication via an optical link in an integrated, modular, and scalable manner. It provides a solution to those applications that have very demanding requirements in terms of synchronization. Field-programmable gate arrays are used to implement the protocol; additionally, special hardware is needed to provide the necessary clock signals used by the dual-mixer time difference for precise phase measurement. In the present work, an expansion board that allows for White Rabbit functionality is presented. The expansion board contains the oscillators required by the White Rabbit protocol, one running at 125 MHz and another at 124.922 MHZ. The architecture of this board includes two oscillator systems for tests and comparison. One is based on VCOs and another on crystal oscillators running at the desired frequencies. In addition, it incorporates a temperature sensor, from where the medium access control address is extracted, an electrically erasable programmable read-only memory, a pulse-per-second output, and a USB UART to access the White Rabbit IP core at the field-programmable gate array. Finally, to ensure the quality of the layout design and guarantee the level of synchronization desired, the results of the power and signal integrity simulations are also presented.
|
Acero, M. A. et al, Alvarez-Ruso, L., Garcia-Soto, A., Nieves, J., & Zornoza, J. D. (2024). White paper on light sterile neutrino searches and related phenomenology. J. Phys. G, 51(12), 120501–214pp.
Abstract: This white paper provides a comprehensive review of our present understanding of experimental neutrino anomalies that remain unresolved, charting the progress achieved over the last decade at the experimental and phenomenological level, and sets the stage for future programmatic prospects in addressing those anomalies. It is purposed to serve as a guiding and motivational “encyclopedic” reference, with emphasis on needs and options for future exploration that may lead to the ultimate resolution of the anomalies. We see the main experimental, analysis, and theory-driven thrusts that will be essential to achieving this goal being: 1) Cover all anomaly sectors -- given the unresolved nature of all four canonical anomalies, it is imperative to support all pillars of a diverse experimental portfolio, source, reactor, decay-at-rest, decay-in-flight, and other methods/sources, to provide complementary probes of and increased precision for new physics explanations; 2) Pursue diverse signatures -- it is imperative that experiments make design and analysis choices that maximize sensitivity to as broad an array of these potential new physics signatures as possible; 3) Deepen theoretical engagement -- priority in the theory community should be placed on development of standard and beyond standard models relevant to all four short-baseline anomalies and the development of tools for efficient tests of these models with existing and future experimental datasets; 4) Openly share data -- Fluid communication between the experimental and theory communities will be required, which implies that both experimental data releases and theoretical calculations should be publicly available; and 5) Apply robust analysis techniques -- Appropriate statistical treatment is crucial to assess the compatibility of data sets within the context of any given model.
|
Alves Batista, R. et al, Mitsou, V. A., Olmo, G. J., & Zornoza, J. D. (2025). White paper and roadmap for quantum gravity phenomenology in the multi-messenger era. Class. Quantum Gravity, 42(3), 032001–47pp.
Abstract: The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test, where a clear signal of quantum properties of gravity is still missing. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 'Quantum gravity phenomenology in the multi-messenger approach (QG-MM)', in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology.
|
Villanueva-Domingo, P., Villaescusa-Navarro, F., Genel, S., Angles-Alcazar, D., Hernquist, L., Marinacci, F., et al. (2023). Weighing the Milky Way and Andromeda galaxies with artificial intelligence. Phys. Rev. D, 107(10), 103003–8pp.
Abstract: We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with estimates from other traditional methods, within our derived posterior standard deviation.
|
Rosa, J. L., Lobo, F. S. N., & Olmo, G. J. (2021). Weak-field regime of the generalized hybrid metric-Palatini gravity. Phys. Rev. D, 104(12), 124030–11pp.
Abstract: In this work we explore the dynamics of the generalized hybrid metric-Palatini theory of gravity in the weak-field, slow-motion regime. We start by introducing the equivalent scalar-tensor representation of the theory, which contains two scalar degrees of freedom, and perform a conformal transformation to the Einstein frame. Linear perturbations of the metric in a Minkowskian background are then studied for the metric and both scalar fields. The effective Newton constant and the PPN parameter. of the theory are extracted after transforming back to the (original) Jordan frame. Two particular cases where the general method ceases to be applicable are approached separately. A comparison of these results with observational constraints is then used to impose bounds on the masses and coupling constants of the scalar fields.
|
Rafi Alam, M., & Ruiz Simo, I. (2019). Weak production of strange Xi baryons off the nucleon. Phys. Rev. D, 100(3), 033001–10pp.
Abstract: The charged current Cabibbo-suppressed associated K Xi production off the nucleon induced by antineutrinos is studied at low and intermediate energies. The nonresonant terms are obtained using a microscopical model based on the SU( 3) chiral Lagrangian. The basic parameters of the model are f(pi), the pion decay constant, Cabibbo's angle, the proton and neutron magnetic moments, and the axial vector coupling constants for the baryons octet, D and F, that are obtained from the analysis of the semileptonic decays of neutron and hyperons. In addition, we also consider Sigma(*)(1385) resonance, which can decay in K Xi final state when this channel is open. The studied mechanism is the prime source of Xi production at antineutrino energies around 2 GeV and the calculated cross sections at these energies can be measured at the current and future neutrino experiments.
|
Sobczyk, J. E., Rocco, N., Lovato, A., & Nieves, J. (2019). Weak production of strange and charmed ground-state baryons in nuclei. Phys. Rev. C, 99(6), 065503–16pp.
Abstract: We present results for the quasielastic weak production of Delta and Sigma hyperons induced by (nu) over bar. scattering off nuclei in the kinematical region of interest for accelerator neutrino experiments. We employ realistic hole spectral functions and we describe the propagation of the hyperons in the nuclear medium by means of a Monte Carlo cascade. The latter strongly modifies the kinematics and the relative production rates of the hyperons, leading to a nonvanishing Sigma(+) cross section, to a sizable enhancement of the Lambda production and to a drastic reduction of the Sigma(0) and Sigma(-) distributions. We also compute the quasielastic weak Lambda(c) production cross section, paying special attention to estimate the uncertainties induced by the model dependence of the vacuum n -> Lambda(c) weak matrix element. In this regard, the recent BESIII measurements of the branching ratios of Lambda(c) -> Lambda l(+)nu(l) (l = e, mu) are used to benchmark the available theoretical predictions.
|