|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Bernabeu Verdu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia-Argos, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title (down) Operation and performance of the ATLAS semiconductor tracker Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P08009 - 73pp
Keywords Solid state detectors; Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Abstract The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.
Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000341927600037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1945
Permanent link to this record
 

 
Author Athenodorou, A.; Binosi, D.; Boucaud, P.; De Soto, F.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S.
Title (down) On the zero crossing of the three-gluon vertex Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 761 Issue Pages 444-449
Keywords Lattice simulations; Three-gluon vertex; Zero crossing; Schwinger-Dyson equations
Abstract We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
Address [Athenodorou, A.] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus, Email: binosi@ectstar.eu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000384469900063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2939
Permanent link to this record
 

 
Author Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Nacher, E.; Tain, J.L.; Tolosa, A.
Title (down) On the performance of large monolithic LaCl3(Ce) crystals coupled to pixelated silicon photosensors Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P03014 - 17pp
Keywords Compton imaging; Detector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Gamma detectors (scintillators CZT HPG HgI etc); Instrumentation and methods for time-of-flight (TOF); spectroscopy
Abstract We investigate the performance of large area radiation detectors, with high energy-and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (50 x 50 mm(2)) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 8 x 8 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm(2)), with a pixel size of 6 x 6 mm(2), we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thick-nesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, we use our MC code to explore the impact of a smaller photosensor segmentation on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 3 x 3 mm(2).
Address [Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Tain, J. L.; Tolosa, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: Luis.Caballero@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000428146300004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3542
Permanent link to this record
 

 
Author Resta-Lopez, J.
Title (down) Nonlinear protection of beam delivery systems for multi-TeV linear colliders Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P11010 - 19pp
Keywords Beam Optics; Beam dynamics; Accelerator Subsystems and Technologies; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)
Abstract The post-linac energy collimation system of future e(+)e(-) multi-TeV linear colliders is designed to fulfil an essential function of protection of the Beam Delivery System (BDS) against miss-steered or errant beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This condition makes the design of the energy collimation system especially challenging, if we take into account the need to dispose of an unprecedented transverse beam energy density per beam of the order of GJ/mm(2), when assuming the nominal CLIC beam parameters at 3 TeV centre-of-mass energy, which translates into an extremely high damage potential of uncontrolled beams. This leads to research activities involving new collimator materials and novel collimation techniques. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a multipole magnet pair for energy collimation. In order to preserve an acceptable luminosity performance, we carefully study the general conditions for self-cancellation of optical aberrations between two multipoles. This nonlinear optics scheme is adapted to the requirements of the post-linac energy collimation system for the CLIC BDS, and its performance is investigated by means of beam tracking simulations. Although applied to the CLIC case, this nonlinear protection system could be adapted to other future colliders.
Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Valencia 46071, Spain, Email: resta@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000329193500035 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1697
Permanent link to this record
 

 
Author Mertsch, P.; Parimbelli, G.; de Salas, P.F.; Gariazzo, S.; Lesgourgues, J.; Pastor, S.
Title (down) Neutrino clustering in the Milky Way and beyond Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 015 - 23pp
Keywords cosmological neutrinos; galaxy clustering; cosmological simulations
Abstract The standard cosmological model predicts the existence of a Cosmic Neutrino Background, which has not yet been observed directly. Some experiments aiming at its detection are currently under development, despite the tiny kinetic energy of the cosmological relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos should be more abundant at the Earth position than at an average point in the Universe. This fact may enhance the expected event rate in any future experiment. Past calculations of the local neutrino clustering factor only considered a spherical distribution of matter in the Milky Way and neglected the influence of other nearby objects like the Virgo cluster, although recent N-body simulations suggest that the latter may actually be important. In this paper, we adopt a back-tracking technique, well established in the calculation of cosmic rays fluxes, to perform the first three-dimensional calculation of the number density of relic neutrinos at the Solar System, taking into account not only the matter composition of the Milky Way, but also the contribution of the Andromeda galaxy and the Virgo cluster. The effect of Virgo is indeed found to be relevant and to depend non-trivially on the value of the neutrino mass. Our results show that the local neutrino density is enhanced by 0.53% for a neutrino mass of 10 meV, 12% for 50 meV, 50% for 100 meV or 500% for 300 meV.
Address [Mertsch, P.; Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany, Email: pmertsch@physik.rwth-aachen.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000528025800016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4382
Permanent link to this record
 

 
Author Balaudo, A.; Calore, F.; De Romeri, V.; Donato, F.
Title (down) NAJADS: a self-contained framework for the direct determination of astrophysical J-factors Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 001 - 33pp
Keywords dark matter simulations; dark matter theory; dark matter detectors
Abstract Cosmological simulations play a pivotal role in understanding the properties of the dark matter (DM) distribution in both galactic and galaxy -cluster environments. The characterization of DM structures is crucial for informing indirect DM searches, aiming at the detection of the annihilation (or decay) products of DM particles. A fundamental quantity in these analyses is the astrophysical J -factor. In the DM phenomenology community, J -factors are typically computed through the semi -analytical modelling of the DM mass distribution, which is affected by large uncertainties. With the scope of addressing and possibly reducing these uncertainties, we present NAJADS, a self-contained framework to derive the DM J -factor directly from the raw simulations data. We show how this framework can be used to compute all -sky maps of the J -factor, automatically accounting for the complex 3D structure of the simulated halos and for the boosting of the signal due to the density fluctuations along the line of sight. After validating our code, we present a proof -of -concept application of NAJADS to a realistic halo from the IllustrisTNG suite, and exploit it to make a thorough comparison between our numerical approach and traditional semi -analytical methods. JCAP02(2024)001
Address [Balaudo, Anna] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands, Email: balaudo@strw.leidenuniv.nl;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001182021200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6018
Permanent link to this record
 

 
Author Wagner, C.; Verde, L.; Boubekeur, L.
Title (down) N-body simulations with generic non-Gaussian initial conditions I: power spectrum and halo mass function Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 022 - 24pp
Keywords power spectrum; cosmological simulations; initial conditions and eternal universe; galaxy clusters
Abstract We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/similar to liciaverde/NGSCP.html.
Address [Wagner, Christian; Verde, Licia] Univ Barcelona, ICCUB IEEC, E-08028 Barcelona, Spain, Email: cwagner@icc.ub.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000283577600013 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 339
Permanent link to this record
 

 
Author Zhang, X.; Xiao, Y.T.; Gimeno, B.
Title (down) Multipactor Suppression by a Resonant Static Magnetic Field on a Dielectric Surface Type Journal Article
Year 2020 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices
Volume 67 Issue 12 Pages 5723-5728
Keywords Radio frequency; Dielectrics; Magnetic resonance; Discharges (electric); Surface discharges; Surface waves; Electrostatics; Monte Carlo simulation; multipactor discharge; orthogonal waves; resonant static magnetic field; secondary electron yield
Abstract In this article, we study the suppression of the multipactor phenomenon on a dielectric surface by a resonant static magnetic field. A homemade Monte Carlo algorithm is developed for multipactor simulations on a dielectric surface driven by two orthogonal radio frequency (RF) electric field components. When the static magnetic field is perpendicular to the tangential and normal RF electric fields, it is shown that if the normal electric field lags the tangential electric field by pi/2, the superposition of the normal and tangential electric fields will trigger a gyro-acceleration of the electron cloud and restrain the multipactor discharge effectively. By contrast, when the normal electric field is in advance of the tangential electric field by pi/2, the difference between the normal and tangential electric fields drives gyro-motion of the electron cloud. Consequently, two enhanced discharge zones are inevitable. The suppression effects of the resonant static magnetic field that is parallel to the tangential RF electric field or to the normal RF electric field are also presented.
Address [Zhang, Xue; Xiao, Yuting] Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Hunan, Peoples R China, Email: zhangxue.iecas@yahoo.com;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Medium
Area Expedition Conference
Notes WOS:000594337700064 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4627
Permanent link to this record
 

 
Author Hornillos, M.B.G.; Gorlychev, V.; Caballero, R.; Cortes, G.; Poch, A.; Pretel, C.; Calvino, F.; Tain, J.L.; Algora, A.; Agramunt, J.; Cano-Ott, D.; Martinez, T.; Mendoza, E.; Rissanen, J.; Aysto, J.; Jokinen, A.; Eronen, T.; Moore, I.; Penttila, H.
Title (down) Monte Carlo Simulations for the Study of a Moderated Neutron Detector Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 1573-1576
Keywords Monte Carlo simulations; GEANT4; MCNPX; Beta delayed neutron emission; Neutron detector
Abstract This work presents the Monte Carlo simulations performed with the MCNPX and GEANT4 codes for the design of a BEta deLayEd Neutron detector, BELEN-20. This detector will be used for the study of beta delayed neutron emission and consists of a block of polyethylene with dimensions 90 x 90 x 80 cm(3) and 20 cylindrical (3)He gas counters. The results of these simulations have been validated experimentally with a (252)Cf source in the laboratory at UPC, Barcelona. Also the first experiment with this detector has been carried out in November 2009 in JYFL, Finland. In this experiment the neutron emission probability after beta decay of the fission products (88)Br, (94,95)Rb, and (138)I has been measured; this data is still under analysis. Simulations with MCNPX and GEANT4 have been performed in order to obtain the efficiency of the BELEN-20 detector for each of the above nuclei using the neutron energy distribution corresponding to each nucleus.
Address [Hornillos, MBG; Gorlychev, V; Caballero, R; Cortes, G; Poch, A; Pretel, C; Calvino, F] Univ Politecn Cataluna, Seccio Engn Nucl, E-08028 Barcelona, Spain, Email: belen.gomez@upc.edu
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 733
Permanent link to this record
 

 
Author Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Tain, J.L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; Gonzalez-Romero, E.; Heil, M.; Jordan, D.; Kappeler, F.; Lampoudis, C.; Martinez, T.; Massimi, C.; Plag, R.
Title (down) Monte Carlo simulation of the n_TOF Total Absorption Calorimeter Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 671 Issue Pages 108-117
Keywords Monte Carlo simulation; Geant4; Neutron cross-sections; Time-of-flight; Neutron capture
Abstract The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.
Address [Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Gonzalez-Romero, E.; Martinez, T.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain, Email: carlos.guerrero@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000301474600013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 973
Permanent link to this record