|   | 
Details
   web
Records
Author Babichev, E.; Fabbri, A.
Title (down) Stability analysis of black holes in massive gravity: A unified treatment Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 8 Pages 081502 - 5pp
Keywords
Abstract We consider the analytic solutions of massive (bi) gravity which can be written in a simple form using advanced Eddington-Finkelstein coordinates. We analyze the stability of these solutions against radial perturbations. First we recover the previously obtained result on the instability of the bidiagonal bi-Schwarzschild solutions. In the nonbidiagonal case (which contains, in particular, the Schwarzschild solution with Minkowski fiducial metric), we show that generically there are physical spherically symmetric perturbations, but no unstable modes.
Address [Babichev, Eugeny; Fabbri, Alessandro] Univ Paris 11, Lab Phys Theor Orsay, F-91405 Orsay, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000334335000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1770
Permanent link to this record
 

 
Author Mazumdar, A.; Morisi, S.
Title (down) Split neutrinos, two Majorana and one Dirac, and implications for leptogenesis, dark matter, and inflation Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 4 Pages 045031 - 6pp
Keywords
Abstract We propose a simple framework to split neutrinos with a slight departure from tribimaximal-where two of the neutrinos are Majorana type which provide thermal leptogenesis. We propose a model based on S-3 flavor symmetry. The Dirac neutrino with a tiny Yukawa coupling explains primordial inflation and the cosmic microwave background radiation, where the inflaton is the gauge invariant flat direction. The observed baryon asymmetry, and the scale of inflation are intimately tied to the observed reactor angle sin theta(13), which can be further constrained by the LHC and the 0 nu beta beta experiments. The model also provides the lightest right-handed sneutrino as a part of the inflaton to be the dark matter candidate.
Address [Mazumdar, Anupam] Univ Lancaster, Lancaster LA1 4YB, England
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000308009000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1144
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I.
Title (down) Spiral inflation with Coleman-Weinberg potential Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 6 Pages 063511 - 5pp
Keywords
Abstract We apply the idea of spiral inflation to the Coleman-Weinberg potential and show that inflation matching our observations well is allowed for a symmetry-breaking scale ranging from an intermediate scale to a grand unified theory (GUT) scale even if the quartic coupling lambda is of O(0.1). The tensor-to-scalar ratio can be of O(0.01) in the case of GUT-scale symmetry breaking.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000352025900003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2183
Permanent link to this record
 

 
Author Alkofer, R.; Llanes-Estrada, F.J.; Salas-Bernardez, A.
Title (down) Spinning pairs: Supporting 3P0 quark-pair creation from Landau-gauge Green's functions Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 7 Pages 074015 - 21pp
Keywords
Abstract Abundant phenomenology suggests that strong decays from relatively low-excitation hadrons into other hadrons proceed by the creation of a light quark-antiquark pair with zero total angular momentum, the so called 3P0 mechanism originating from a scalar bilinear. Yet the quantum chromodynamics (QCD) interaction is perturbatively mediated by gluons of spin one, and QCD presents a chirally symmetric Lagrangian. Such scalar decay term must be spontaneously generated upon breaking chiral symmetry. We attempt to reproduce this with the help of the quark-gluon vertex in Landau gauge, whose nonperturbative structure has been reasonably elucidated in the last years, and insertions of a uniform, constant chromoelectric field. This is akin to Schwinger pair production in quantum electrodynamics (QED), and we provide a comparison with its two field-insertions diagram. We find that, the symmetry being cylindrical, the adequate quantum numbers to discuss the production are rather 3E0, 3E1, and 3110 as in diatomic molecules, and we indeed find a sizeable contribution of the third decay mechanism, which may give a rationale for the 3P0 phenomenology, as long as the momentum of the produced pair is at or below the scale of the bare or dynamically generated fermion mass. On the other hand, ultrarelativistic fermions are rather ejected with 3E1 quantum numbers. In QED, our results suggest that 3E0 dominates, whereas the constraint of producing a color singlet in QCD leads to 3110 dominance at sub-GeV momenta.
Address [Alkofer, Reinhard] Karl Franzens Univ Graz, Inst Phys, NAWI Graz, Univ Pl 5, A-8010 Graz, Austria
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001235870400019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6189
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Loayza, N.; Pieroni, M.
Title (down) Spectroscopy of particle couplings with gravitational waves Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 6 Pages 063522 - 8pp
Keywords
Abstract We discuss the possibility to measure particle couplings with stochastic gravitational wave backgrounds (SGWBs). Under certain circumstances a sequence of peaks of different amplitude and frequency-a stairway-emerges in a SGWB spectrum, with each peak probing a different coupling. The detection of such signature opens the possibility to reconstruct couplings (spectroscopy) of particle species involved in high energy phenomena generating SGWBs. Stairwaylike signatures may arise in causally produced backgrounds in the early Universe, e.g., from preheating or first order phase transitions. As a proof of principle we study a preheating scenario with an inflaton 0 coupled to multiple daughter fields f chi jg with different coupling strengths. As a clear stairway signature is imprinted in the SGWB spectrum, we reconstruct the relevant couplings with various detectors.
Address [Figueroa, Daniel G.; Loayza, Nicolas] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000861731100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5367
Permanent link to this record